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Abstract 

Datasets representing the conformational landscapes of protein structures are high-dimensional and hence present 

computational challenges. Efficient and effective dimensionality reduction of these datasets is therefore paramount to our 

ability to analyze the conformational landscapes of proteins and extract important information regarding protein folding, 

conformational changes, and binding. Representing the structures with fewer attributes that capture the most variance in 

the data makes for a quicker and more precise analysis of these structures. In this study, we make use of dimensionality 

reduction methods for reducing the number of instances and for feature reduction. The reduced dataset that is obtained is 

then subjected to topological and quantitative analysis. In this step, we perform hierarchical clustering to obtain different 

sets of conformation clusters that may correspond to intermediate structures. The structures represented by these 

conformations are then analyzed by studying their high-dimensional topological properties to identify truly distinct 

conformations and holes in the conformational space that may represent high energy barriers. Our results show that the 

clusters closely follow known experimental results about intermediate structures as well as binding and folding events. 

Keywords: Dimensionality Reduction; Hierarchical Clustering; Betti Numbers; Protein Folding; BioScience. 

 

1. Introduction 

Characterizing intermediate protein conformations is difficult to do experimentally due to the fleeting nature of 

these structures. Doing so is necessary for understanding and characterizing protein function and dynamics. This work 

uses dimensionality reduction and algebraic topology to extract meaningful information inherent in these structures. 

Protein structure and dynamics are essential to their function. Therefore, by understanding the connection between 

structure, dynamics, and function, we can better understand cellular processes involving proteins. The question of how 

the structure and dynamics of proteins relate to their function has challenged scientists for several decades but still 

remains open. Conformational search methods aim to characterize the conformational space of proteins in order to find 

low energy regions corresponding to highly populated or intermediate structures [1-3]. These intermediate states are 

transient and therefore hard to detect experimentally. However, they may be essential to understanding dynamic events 

such as folding, protein-protein interactions, and various cellular processes. The potential energy landscape of a 

protein is often rugged and has a large number of local minima [4]. This makes conformational exploration especially 
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challenging. The problem becomes even more challenging due to the high dimension of the problem. A typical protein 

can contain several hundred amino acids or several thousand atoms. Therefore, the search space made up of all 

possible conformations that a protein can assume is large and its enumeration is practically impossible. Existing 

physics-based computational methods that sample the conformational space of proteins include Molecular Dynamics 

(MD) [5], Monte Carlo (MC) [6] and their variants, as well as approximate methods based on geometric sampling [2, 

7-10], Elastic Network Modeling [11-13], normal mode analysis [14, 15], morphing [16, 17], and several other 

methods. Even after the conformational space is sampled, it should be filtered and clustered to extract meaningful 

information. Several clustering methods have been designed for protein conformational space [7, 18, 19]. Most 

clustering methods for high-dimensional data incorporate metric functions that evaluate the distance between objects 

in the dataset, or a lower-dimensional representation of these objects, often trying to detect outliers [20].   

1.1. Problem Statement 

The protein folding problem, which aims at predicting the correct protein structure from its sequence, it is an 

important problem in Biology. The conformational search problem is a related problem that aims at characterizing the 

conformational space of proteins in order to find minimum energy regions corresponding to highly populated 

structures and characterize dynamic events such as folding or docking [21, 22]. The potential energy landscape of a 

protein is immense. A typical protein molecule has hundreds of amino acids and several thousand atoms. 

Consequently, the number of configurations that a molecule can attain is extremely large and practically impossible to 

enumerate computationally. This has given rise to a foray of methods that attempt to model the actual pathways that a 

protein undertakes while transitioning from one conformation to another that ultimately help in elucidating the highly 

populated conformations generated in the entire process. In this work we present a method to analyze the 

conformational space of proteins by first reducing the dimensionality of molecular conformations datasets that 

represent the molecule and then use a number of filtering techniques taken from algebraic topology to identify clusters 

of intermediate conformations. The molecules used range from small (Oxytocin and Vasopressin) to medium (Cdc42) 

to large (GroEL). Details about them can be found in the Results section. The main contributions of the paper can be 

summed up as under: 

 Data representation – Using works described in sections 2.2.1 and 2.2.2, we create a space efficient way to 

represent molecular data. The datasets in use have just enough instances and attributes that capture the maximum 

amount of variance. 

 Use versions of hierarchical clustering, depending on the molecule, to sample different conformations of a 

molecule. Details can be found in section 2.3.1. 

 Use algebraic topology methods to analyze distinctiveness among various clusters of conformations and extract 

the topological properties of the clusters. 

1.2. Feature Reduction 

It is often helpful to obtain a lower-dimensional representation of the data that preserves as much of the variance in 

the original data as possible. It is especially useful in protein conformations, since the mutual constraints between 

atoms in the protein molecule makes the ”true” dimensionality of a protein structure much smaller than the number of 

parameters required to represent a 3 dimensional protein molecule. Existing algorithms for data instance reduction are 

broadly divided into, incremental, decremental, batch and mixed [23-27]. The incremental algorithms begin with a null 

set and data instances are added to it depending on the result of the algorithm. The decremental algorithms, on the 

contrary, begin with the entire set of instances and depending on the decision offered by the selection algorithms, 

instances are taken out from the set one had at the beginning. The batch algorithms function in a way that each 

instance is first analyzed and then a decision is made as to which ones to keep. Mixed algorithms begin with a pre-

selected set of instances and the process then continues to figure whether instances should be deleted or added. An 

evaluation of the age-old techniques of instance reduction is explained by Wilson and Martinez [23]. 

Linear dimensionality reduction like PCA and its variants may not capture the complex, non-linear nature of 

protein conformational landscape. Dimensionality reduction techniques are broadly classified based on the solution 

space they generate, as convex and non-convex [28]. Techniques described by Maaten [29] give explicit details of the 

various well established non-convex methods. These methods are further sub-divided into Full Spectral Techniques, 

the ones that perform the eigenvector decomposition of a full matrix and Sparse Spectral Techniques, the ones that do 

the same for a sparse matrix. The latter ones have better time-complexity but these approaches are local. They attempt 

at retaining only the local structure that the sparse portions of the dataset present. On the other hand, Full Spectral 

Techniques, capture the covariance between all the data instances and form a more thorough representation of the 

structure as a whole. The Isomap algorithm [30] is a non-linear dimensionality reduction method that falls into the 

Convex Full Spectral category. It takes as input the distances between points in a high-dimensional observation space, 

and outputs their coordinates in a low-dimensional embedding that best preserves their intrinsic geodesic distances. 

The original dimensions of the matrix is 𝑀 × 𝑁, where 𝑁 is the number of instances and 𝑀 is the size of each 
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instance. The output matrix is of size 𝑁 × 𝑚, where 𝑚 << 𝑀. It has been shown by Haspel [2] that for protein 

datasets, Isomap produces much better results, due to protein conformational changes being non-linear and complex. 

Despite its advantage in efficient representation of molecular data [31, 32], Isomap is computationally expensive, 

especially with very large, multi-dimensional datasets. To overcome this, we use a version of the Mode-III of Isomap 

[55]. Improvements over Isomap are presented in [33, 34]. A similar approach is adopted for this work but in a way 

that is more suited for protein data. 

1.3. Algebraic Topology 

The conformational space of proteins is highly complex and high dimensional. Obtaining a full, analytical 

description of it is essentially computationally impossible. Different methods for characterizing the conformational 

landscape try to obtain a coarser, more approximate description of the landscape while still capturing its global, 

essential characteristics while preserving important features. Below we give a brief survey of the tools used in this 

paper. 

1.3.1. Persistent Homology 

Persistent homology is an algebraic topological tool for computing features of a space at (essentially) different 
spatial resolutions [19]. To find the persistent homology of a space X, presented as a data set, we first assign a 
simplicial complex. Moreover, using a distance function on the underlying space, we can build a filtration of the 
simplicial complex, that is, a nested sequence of complexes. We follow the notations in [35]: 

Simplicial Complexes: A simplicial complex K is given by the following datum: 

 A set K0 of vertices or 0-simplices. We will also use the notation K0 = Z for consistency with the literature. 

 For each i ≥ 1, a set Ki of i-simplices σ = [z0z1...zi], where zj ∈ Z. 

 Each i-simplex has i+1 faces σj, j = 0,…, i obtained by deleting the j-th element in the list. We require that 
the faces σj are in 𝐾𝑖−1. 

We think of 0-simplices as vertices, 1-simplices as edges, 2-simplices as triangular faces, and 3-simplices as 
tetrahedra, etc. 

Homology and Betti Numbers: For a simplicial complex K as above, we associate the group of i-chains Ci with 

coefficients on a ring R (we will take R = Z2 to avoid issues with orientations) as the group generated by the elements 

of Ki, that is the set of formal sums ∑ 𝑟𝑠𝜎𝑠, σs ∈ Ki, rs ∈ R. The boundary map ∂i: Ci → Ci – 1 takes an i-simplex σ = 

[z0, ..., zi] ∈ Ki to the formal alternating sum ∑(−1)𝑗[z0, . . . , zˆj, . . . , zi], and it is extended by linearity over Ci. This 

map satisfies ∂i◦∂i +1 = 0. That is, the boundaries given by the image Bi = im(∂i +1) ⊂ Ci lies in the subgroup of 

cycles, given by the kernel Zi = ker(∂i) ⊂ Ci. This makes C• a chain complex. The i-th homology 𝐻𝑖(𝐾) is defined as 

the quotient Zi/Bi, this is a module over R. 

The k-th Betti Number 𝐵𝑒𝑡𝑡𝑖𝑘  (𝐾) of the complex is the rank of the k-th homology of the complex 𝐻𝑘(𝐾) as an R-

module. Roughly speaking, this gives a count of the number of k-dimensional holes in the complex. In particular, 

𝐵𝑒𝑡𝑡𝑖0(𝐾) is the number of connected components of K. For instance, a k-dimensional sphere, has all 𝐵𝑒𝑡𝑡𝑖 numbers 

equal to zero except for 𝐵𝑒𝑡𝑡𝑖0 = 𝐵𝑒𝑡𝑡𝑖𝑘 =  1. For a topological space X, approximated by a complex  𝐾𝑋, its homology 

𝐻𝑖(𝑋) = 𝐻𝑖(𝐾𝑋) and associated Betti numbers are classical invariants. Figure 1 has some examples, for instance a 

torus has one connected component so 𝐵𝑒𝑡𝑡𝑖0=1, two nonhomologous one-dimensional cycles – one equatorial and 

one meridional, so 𝐵𝑒𝑡𝑡𝑖1=2 and a single 2-dimensional hole enclosed within the surface, 𝐵𝑒𝑡𝑡𝑖2=1. Similarly, for a 

circle, 𝐵𝑒𝑡𝑡𝑖0 = 𝐵𝑒𝑡𝑡𝑖1 = 1, and for a point 𝐵𝑒𝑡𝑡𝑖0= 1. 

 

Figure 1. Representation of Betti Numbers as holes: (a) A dot – 1 connected component, (b) A circle – 1 connected 

component and 1 loop, (c)A torus – 1 connected component, 2 loops and a 2-dimensional face 
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Data Sets and Persistent Homology: An important example for this paper consists of the simplicial complex 

associated to a data set or point cloud. Let 𝑍 be a set of points in an Euclidean space ℝ𝑛. To this data, and to any 

radius 𝜖 > 0 we can associate a simplicial complex 𝐾𝜖  as follows. The 0-simplices consist of the points {𝑧} in the data 

set themselves. A set of two points {𝑧0, 𝑧1} is declared to be a 1-simplex if the 𝜖 − 𝑏𝑎𝑙𝑙𝑠 centred at zi intersect, that is if 

𝐵𝜖(𝑧1) ∩ 𝐵𝜖(𝑧1) ≠  ∅. Analogously the k-simplices will be defined by those sets of k + 1 points {𝑧0, . . . , 𝑧𝑘} for which 

the intersection 𝐵𝜖(𝑧1) ∩. . .∩ 𝐵𝜖(𝑧𝑘) ≠  ∅ is not empty. Certainly for small 𝜖 the complex only contains 0-complexes 

and for large 𝜖 the complex yields the degenerate complex for which all sets of k + 1 points define a k-simplex since 

all the points will be inside a single ball. Varying the 𝜖 yields a filtration of this complex. By a filtration of a simplicial 

complex K we mean a collection of sub-complexes {𝐾(𝜖)|𝜖 ∈  ℝ} of K such that 𝐾(𝑡) ⊂ 𝐾(𝑠) whenever t ≤ s. A 

filtration yields Persistent Homology, an 𝜖 dependent homology theory 𝐻𝜖  and hence a family of Betti numbers which 

depend on 𝜖. This is what its called persistent bar codes. For all purposes, we will interpret the radius 𝜖 as a time 

parameter and we will sometimes denote it as t. 

We are interested in the study of how the topological invariants of a dataset varies with t and which Betti numbers 

and generators of homology persist with this variation. Several computational tools to compute Persistent Homology 

and associated bar codes, such as JavaPlex [36] and the Topological Data Analysis TDAToolBox [37] for R and [38] 

for Python were used. In general one has to apply dimensionality reduction methods to effectively compute any 

topological analysis. 

In this work, on the embeddings produced by dimensionality reduction, we perform both hierarchical clustering 

and compute its persistent homology. The 𝐵𝑒𝑡𝑡𝑖0 of the embeddings produces the same number as the number of 

relevant clusters in hierarchical clustering. The results are presented in the next section. Furthermore, these clusters are 

then subjected to further topological analysis. Each of these clusters (of a molecule) is a connected component of the 

embedding. Consequently, the Betti0 of each of these is 1. We then compute Betti1 and Betti2 of each of these 

clusters to find out about the topological characteristic of the distinct clusters. 

Algebraic topology in Bioinformatics: Algebraic topology approaches have recently been explored in the context 
of sampling biological data. The work cited in [39] describes the use of topological signatures, which the 
authors call Evolutionary Homology (EH) barcodes, reveal the topology-function relationship of the network and thus 
give rise to the quantitative analysis of nodal properties. The proposed EH is applied to protein residue networks for 
protein thermal fluctuation analysis, rendering accurate B-factor prediction for a number of proteins. A thorough 
review of the emerging applications of topological methods to genomics is presented in [40]. An insightful piece 
presenting concisely the ramifications of these approaches are elucidated in [41]. Algebraic topology and persistent 
homology were also used for protein-protein interaction [42] and protein conformational dynamics [19]. It is 
documented that intermediate structures can be detected in protein conformational spaces using algebraic topology 

and hierarchical clustering [3], but we take it further by exploring higher order 𝐵𝑒𝑡𝑡𝑖 numbers that may give us more 
information about the conformational space and analyze the results by filtering the conformations with low potential 
energy. In this contribution we fill the gap by analysing the conformational spaces of multiple proteins of different 
sizes using persistent homology, clustering and dimensionality reduction techniques. Our results match experimental 
data when it is available. 

2. Methods 

2.1. Generation of Data 

The molecules chosen with in this work are diverse and very different in their function and dynamics. The 

conformational spaces for oxytocin, vasopressin, hGalanin, pGalanin and Cdc42 were sampled using Molecular 

Dynamics (MD) simulations. All systems were represented at full atomic resolution. All the above proteins 

except Cdc42 are shorter peptides with no crystal structures. The initial linear peptide was modelled using the 

Chimera software [43] as an idealized helix. Hydrogens and solvent were added using the AMBER software package 

[5]. Simulations were performed in constant volume (NVT) in an orthorhombic box using the TIP3 solvent model 

[44] to simulate infinite dilution. Periodic boundary conditions were applied using the nearest image convention. The 

overall charge of the system was kept neutral for the use of particle mesh Ewald summation to calculate electrostatic 

charges [45]. The simulations were carried out with the NAMD package [46] using the AMBER ff03 force field [47]. 

To sample the conformational spaces of the peptides we used a simulated annealing based search [6]. For Cdc42, we 

used long MD simulations as described in [48]. The GroEL molecule is larger and cannot be easily sampled using 

MD simulations. The conformations were sampled using a Monte Carlo (MC) [6] based conformational pathway 

search. The protocol is detailed in Haspel [3]. The search begins with the PDB (Protein Data Bank) format of one 

conformational extreme and expands following a biased Rapidly-expanding Random Tree (RRT) algorithm to 

simulate the pathway that can be undertaken to reach the goal conformation [49]. At every iteration a parent protein 

conformation is chosen from pool of new conformations, the one selected is the one which has its energy below a 

threshold. The new conformation is added to the pool2 if its RMSD (Root Mean Square Deviation) is closer to the 

goal. 
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2.2. Dimensionality Reduction 

Data Instance Reduction 

The first step is to perform dimensionality reduction on the data. We use a data instance reduction method to 

decide the information content offered by each data instance. We first apply spherical PCA as described in [50-52]. 

The input is a data matrix and the number of dimensions (principal components) desired of all the data instances. The 

output is a lower dimensional projection of the data. We used two or three dimension projections, in order to better 

visualize structurally significant data. It is observed that over eighty percent of the variance is explained by the first 

three principal components in all the types of data we used, although it is not always the case in other domains. This 

algorithm removes data instances that are deemed not to contribute to the variance in the data. More details about 

the algorithm itself and the results it produced can be found in [53, 54]. The result of this step produces a non-

redundant representation of the dataset which now has fewer instances but its important properties that account for 

maximum variance present in it are preserved. 

Low-Dimensional Embedding 

The next step is to obtain an embedding of the conformations in the reduced dataset in a lower dimension. We 

used a parallelized version of the Isomap algorithm that produces the same results and works much faster [55]. The 

algorithm can be used to produce an embedding in as many dimensions as the attributes of the dataset, we pick the 

first three dimensions to work with because they capture over 80% of the variance inherent in the data. 

1. It Is Predefined, Takes Care Of Whether A Conformation Would Be Feasible, Keeping In Mind Atom 

Collisions. 

2. The Conformational Pathway. 

2.3. Topological Analysis 

After obtaining a reduced embedding that represents the dataset, the next step is to slot the data to sample 

different conformations inherent in these embeddings. To ascertain the number of conformations that can be 

extracted, we use two methods, namely, hierarchical clustering and persistent homology. Persistent Homology is the 

next step in the process but here it was used as a proof of validation, as both, hierarchical clustering and persistent 

homology revealed the same structural complexities in each dataset. We used the R package TDA’s (Topological 

Data Analysis) function calculate homology [56] and the TDAToolBox [37] to generate the topological analysis. 

Hierarchical Clustering 

Hierarchical Clustering is a known method for identifying similar groups in a dataset. Built-in function in R, 

hclust    is used for the purpose. We chose hierarchical clustering over k-means clustering to prevent having to pre-

declare the number of clusters sought, and present the results coherently in the form of a dendrogram. Depending on 

how similar or dissimilar the data instances are, hierarchical clustering can be divided into two categories: 

 Agglomerative Hierarchical Clustering: It works in a bottom-up fashion. Each data instance is considered a 

single element cluster to begin with. At each step of the algorithm, two most similar clusters are combined into 

one. The process continues until all instances have been combined into one big cluster containing all the data 

instances. 

 Divisive Hierarchical Clustering: This method works complementary to the previous one. Here, all the data 

instances are considered a point of one big cluster at the beginning. At each iteration of the process, the most 

heterogeneous cluster is divided into two. The process continues until all the data instances are a single 

element cluster. 

Agglomerative form of hierarchical clustering is more suited for more heterogeneous data that has a large number 

of small clusters to identify. On the other hand, divisive clustering as expected, is better at isolating big clusters. We 

use both these approaches depending on which molecule we are analyzing. The molecular datasets that are known 

to undergo large scale conformational changes like GroEl  in this work was subjected to agglomerative hierarchical 

clustering and the others to the divisive one. To isolate the clusters, we plot the results and the dendrogram tree 

suggests where it can be cut for major clusters. The function, cutree serves the purpose and the function table 

computes the size of each of these clusters. Then the clusters with at least 100 instances are picked. For example, 

in Figure 2 the height of the clusters is suggestive of their sizes, if the cutree function is called with an argument 

greater than 2, one of the two clusters splits in a way such that one child cluster has fewer than 100 points. 

The entire workflow can be summed up as under: 

1. Obtain a subset of the dataset generated by MD simulations using the PCA based data instance reduction. 
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2. Obtain the low dimensional embedding by perform ing Isomap on this subset. 

3. Perform hierarchical clustering on this embedding and compare to the Betti0 value for estimating the number of 
clusters. 

4. Compute Betti1 and Betti2 of the clusters to establish the different topological properties of distinct 
clusters. 

 

Figure 2. Clustering hierarchy for the inactive GDP-bound conforma- tion of Cdc42. The conformational space breaks 

into two clearly defined clusters 

3. Results And Discussion 

In this work we chose a number of medium to large proteins with different conformational dynamics. As 

mentioned earlier, to generate clusters from the reduced dimension embedding various methods were used depending 

on the molecular dataset. A thorough analysis for the various molecules is as under. 

3.1. Cdc42 

Cell Division Control-42 is a GTP (Guanosine Triphosphate) binding protein [57]. Human Cdc42 is a small 

molecule with 191 amino acids. It belongs to the Rho protein family, which regulates signaling pathways that control a 

wide range of cellular functions, for example, cell migration and cell cycle progression. It switches between cycles 

an active GTP-bound state and an inactive GDP (Guanosine Diphosphate)-bound state. Recently, Cdc42 has been 

shown to actively assist in cancer progression and metastasis. Several studies have established the basis for this and 

hypothesized about the underlying mechanisms [58, 59]. The data for all of the molecules was procured using 

Molecular Dynamics trajectories from a recent work by Haspel et al. [48]. 

Inactive form (GDP Bound): Both forms of hierarchical clustering produced the same number of clusters here, 

shown in Figure 2. There were two significant clusters. We call a cluster significant if it has at least 100 data 

instances. Figure 3 shows the embedding obtained by the feature reduction algorithm, where each cluster is shown 

in different color. To visualize the topology of the conformational landscape we used the kernel density estimation 

method and persistence diagram as described in the TDAToolBox package [60], Figure 4(a) shows the density 

estimates over the embedding, highlighting two peaks, Figure 4(b) shows the persistence diagram for the 

conformational space of this molecule. At the given ϵ (as defined and elaborated in section 1.3), here Betti0 =2, 

tantamount to two relevant clusters of this molecule. (Both methods of analysis: hierarchical clustering and 

algebraic topology produce corroborative results for this and all of the molecules in this study.). 

One conformation representative of each of the significant clusters is shown in Figure-5 (a) and (b). Both these 

conformations are selected as the data point closest to the centroid of the two clusters. The PDB (Protein Data 

Bank) representations shown in Figure 3 were obtained using VMD (Visual Molecular Dynamics) [61]. Figure 5(c) 

shows a superimposition of the two clusters with the regions associated with binding and activation highlighted in 

color: The Switch-I region (residues 25-37) in blue, the Switch- II region (residues 57-75) in orange and the insert 

region (residues 122-135) in red. It can be shown that these three regions represent the highest variability, consistent 
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with the fact that they are involved with binding and activation [62, 63]. These two clusters are then compared to each 

other to deduce conformational information. 

 

Figure 3. Embedding of the two clusters of the inactive Cdc42 (PDB:4did). Each cluster is highlighted in a different color 

  

                                                        (a)                                                                                                    (b)  

Figure 4. Computations over Inactive Cdc42 (4did): (a) Density Esti- mate over 3-D space, (b) Persistence barcodes: two 

clusters persist at the given level of filtration for conformational space (є = 35) 

Next, we examined the topological features of each cluster separately. As mentioned earlier, all of the clusters (in 

all the molecules) are one connected component of a larger structure, so Betti0 of all of them is 1. A quantitative 

representation of the persistence barcodes for the two clusters is shown in Figure-6. It is another way of visualizing 

persistent homology. Each feature is depicted by a single point with the horizontal axis representing feature birth 

and the vertical axis representing feature death. The line y = x is included as a reference. Since feature birth always 

precedes feature death (x<y), all points in a persistence diagram lie above the reference line. Just like topological 

barcodes, feature dimension is coded as the point’s color, the red dots represent dimension 0 (Betti0), the blue dots, 

dimension 1 (Betti1) and the green dots represent dimension 2 (Betti2). 
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                           (a)                                                                       (b)                                                                        (c) 

Figure 5. (a) and (b) Two conformations of the inactive form of Cdc42 (PDB 4did)(c) A superimposition of the two 

conformations, the regions with maximum difference stand out at the top of the figure 

In Figure 6, we see a number of 0-cycles (red dots); it is difficult to differentiate between most individual 0-cycles 

due to all of them being a part of the same connected component. However, there is a number of loops (blue dots)- in 

Figure 6 (b) three of which are significant and persist in the entirety of the conformational space, there is also a green 

dot (a void) that persists. This represents the bigger, more branched and perforated cluster of Figure-3, the other 

cluster of this figure is smaller and structurally not as complex, as is also evident from its Betti1 distribution in 

Figure-6(a), none of the loops in this conformation are significant enough to span the entire conformational space, 

and it has no voids (its Betti2 = 0). The significant thing to note here is that both of these conformations have 

different distributions of the higher 𝐵𝑒𝑡𝑡𝑖 number at the same level of filtration (ϵ) which means that conformations 

represented by these clusters are distinctively different. 

 

Figure 6. Quantitative representation of the persistence barcodes for the two clusters of the inactive (GDP bound) state of 

Cdc42: Red dots are 𝑩𝒆𝒕𝒕𝒊𝟎, the blue dots represent 𝑩𝒆𝒕𝒕𝒊𝟏, and green 𝑩𝒆𝒕𝒕𝒊𝟐 

Active Form: This active (GTP bound) form of Cdc42 was subjected to divisive form of hierarchical clustering that 

indicated that the molecule has only one significant cluster. The clustering hierarchy, Isomap embedding, persistence 

diagram and the density estimates for this form of Cdc42 can be found respectively in Figure 7, all of which 

corroborate the existence of only one conformation. Figure 7 (a) clearly shows that there is only one significant 

cluster, the right part of the dashed line is a number of data points much less than 100 and hence is not significant. 
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Figure 7. Active form of Cdc42-(PDB 4js0): (a)- Divisive Clustering hierarchy, (b)- Isomap Embedding, (c)- Persistence 

diagram with є = 35, (d)- Density estimates 

3.2. Oxytocin and Vasopressin 

Oxytocin and Vasopressin are both small peptide hormones, both with 9 amino acids [64]. They differ only in two 

positions in their amino acid sequence, as shown under: 

Oxytocin: Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly  

Vasopressin: Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly 

These are smaller peptides that do not have one stable structure. So, intuitively, divisive hierarchical clustering 

works better to sample conformations here. Nonetheless, for oxytocin we performed agglomerative clustering and 

obtained a number of clusters but they were very small and exhibited the same higher Betti numbers. The first three 

Betti numbers of these five clusters are in Table 1. These numbers indicate that there really are just two different 

clusters here: a result that was obtained when divisive form of hierarchical clustering was performed which resulted 

in just two significant clusters. This shows that the choice of the type of hierarchical clustering is critical to the 

study of conformational landscape. The hierarchy produced by divisive clustering is shown in Figure 8(a). As seen 

in Figure 8(b), the kernel density estimations for Oxytocin also resulted in two peaks (one major and another 

smaller that protrudes from it). Figure 8(c) the persistence diagram for the entire conformational space shows three 

red dots that ultimately represent two clusters - one big and one small, smaller of which is made of two even smaller 

clusters that merged during the process. The persistence diagrams for the two clusters of Oxytocin and the one in 

Vasopressin are shown in Figure 9. The first cluster of oxytocin had two loops and no voids. The second cluster on 

the other hand had three loops and a void. For Vasopressin, there was only one significant cluster produced by 

divisive hierarchical clustering. The only cluster in Vasopressin is close in its topological structure with the known 

Oxytocin conformation which was expected given the similarity in the sequences of the amino acids of the two 

molecules. The conformations representative of the two clusters of Oxytocin and the one of Vasopressin are shown in 

Figure 10. 

(b)
(a)

(c)
(d)
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Table 1. Betti Numbers for clusters of Oxytocin produced by Agglomerative Hierarchical Clustering 

Cluster No. Betti0 Betti1 Betti2 

1 1 1 0 

2 1 1 0 

3 1 1 0 

4 1 4 0 

5 1 0 0 

  
                                                             (a)                                                                                                     (b) 

 

(c) 

Fig. 8. Oxytocin: (a)- Divisive Clustering hierarchy, (b)- Density Estimate, (c)- the persistence diagram, showing one 

persistent cluster and two others (on the top right) that soon merge into the main one 
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(a)  

(b)  

(c)  

Figure 9. Persistence Diagrams of: (a)- Oxytocin, first cluster, (b)- Oxytocin, second cluster, (c) Vasopressin. (b) and (c) 

have similar high dimensional topological features 
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(a) (b) (c) 

Figure 10. PDB Conformations of: (a)- Oxytocin, first cluster, (b)- Oxytocin, second cluster, (c) Vasopressin 

3.3. Human and Porcine Galanin 

Galanin is a neuropeptide which is encoded by the GAL gene. The gene is expressed in the parts of central 

nervous system, and gut of humans and some other mammals [65]. Porcine Galanin (pGalanin) and Human 

Galanin (hGalanin) are two variants of Galanin that differ by 5 out of their amino acids. pGalanin contains 29 amino 

acids and hGalanin has 30. Both of these molecules also do not have one stable 3D structure due to their small size. 

Divisive hierarchical clustering on hGalanin resulted in two major clusters (shown in Figure 11) and that of pGalanin 

produced only one cluster. 

 

Figure 11. Divisive clustering hierarchy of Human Galanin 

Topologically, the two clusters of hGalanin are quite different from each other, shown in Figures 12(a) and (b), 

which is in agreement with experimental results produced by Holst et al [66]. The persistence diagram for 

pGalanin is shown in Figure 12(c). As is evident from the persistence diagrams, the second cluster of hGalanin and 

the pGalanin cluster are very similar. The study of hGalanin in [66] also shows that there are two molecular forms 

of hGalanin, one of 30 and another of 19 amino acids. The larger of the two peptides has a sequence which is 

identical to that of pGalanin except for the following substitutions: Val16, Asn17, Asn26, Thr29 and Ser30. The 

PDB structures of these clusters is shown in Figure 13, further corroborating that there are two conformations for 

hGalanin and one of them is structurally similar to that of pGalanin. 
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(a)  

 

(b)  

 

(c)  

 
Figure 12. Persistence diagrams for the (a)- first cluster of hGalanin, (b)- second cluster of hGalanin, (c)- pGalanin cluster 
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(a) (b) (c) 

Figure 13. Conformations of Galanins: (a-b)- Conformations representa- tive of the two clusters of hGalanin, (c) 

Conformation representative of the single pGalanin cluster 

3.4. GroEL 

GroEl is a chaperonin protein which is needed by many other proteins for their proper folding. Structurally, 

GroEL is a dual-ringed tetradecamer, with both the cis and trans rings consisting of seven subunits each. The 

conformational changes that occur within the central cavity of GroEL cause for the inside of GroEL to become 

hydrophilic, rather than hydrophobic, and is likely what facilitates protein folding. GroEL requires the co-chaperonin 

protein complex, GroES. Binding of substrate protein, in addition to binding of ATP, induces an extensive 

conformational change that allows association of the binary complex with GroES. It is the heaviest molecule in the 

study with 524 amino acids. It is known to undergo large scale conformational changes and hence agglomerative 

form of hierarchical clustering was used here. It helped in identifying six different clusters (as is corroborated by [3]), 

isomap embedding and clustering hierarchy of which is shown in Figure 14(a) and (b) respectively. This is the most 

diverse molecule in the study and has a complex more perforated conformational space, and hence the isomap 

embedding is shown in three dimensions to highlight the different clusters. The conformations representative of each 

of these clusters are shown in Figure 15. Looking at the clusters, one can see the opening and closing along the 

hinge. The persistence diagrams for the six individual clusters can be found in Figure 16. 

(a)

  

(b)

  

Figure 14. (a)- Embedding of the six clusters of GroEL. Each cluster is highlighted in a different color. X, Y, Z axes are the 

respective Isomap coordinates, (b)- Agglomerative clustering hierarchy, the insignificant cluster was taken off the analysis 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 15. Representatives of the six clusters obtained for the GroEL monomer 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 16. Persistence diagrams for the six clusters of GroEL 

4. Analysis of Results 

Results above establish that the entire methodology of using dimesionality reduction, hierarchical clustering and 

topological analysis helps in sampling the conformational landscape of a molecule in a way that truly distinct 

conformations are identified. As mentioned earlier in the section on generation of data, the data for most molecules 

here was generated using molecular dynamics simulations; they also yield the potential energy of each simulated 

conformation, taking into account the relative three dimensional placement of each atom that makes the conformation. 

Topological analysis of the entire energy space is the same as computing persistent homology of the entire 

embedding generated after feature reduction (which means without filtering the conformations using instance 

reduction). To explore the energy landscape of the conformational space we filtered the conformations for three 

molecules (GDP bound Cdc42, Oxy tocin and hGalanin, the ones that were generated using MD simulations and were 

hypothesized to have more than one persistent conformation) based on their energy. We retained only the 

conformations that have energy less than the 80% of conformations, in other words, we performed filtering at 20% 

filtration of energy. To do this, we simply sorted the conformations based on their energy and picked the first 20%. 

The embedding of these molecules at this filtration is shown in Figure17. As is clear from the embedding, it can be 

seen that even at such low levels of energy filtration, the molecules separate into two clusters, as suggested by 

topological analysis. This indicates that the method described in this work to characterize conformational space of 

proteins is capable of sampling low energy conformations of protein molecules that are likely to persist. 
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(a)  

(b)  

(c)  

Figure 17. Embeddings of 20% lower energy conformations of: (a)- GDP bound Cdc42 (b)- Oxytocin, (c)- Human Galanin 
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5. Conclusion 

Many proteins undergo large-scale conformational changes as part of their function. Characterizing the 

conformational space of proteins is crucial for understanding their function and dynamics. We present an efficient 

filtration procedure that works well for sampling the intermediate conformations for protein molecules that undergo 

large-scale conformational changes as well as for the ones that have a pervasive native state. The method presented is 

well suited to establish distinctiveness among the clusters generated. Analysis of low energy conformation clusters 

using dimensionality reduction and algebraic topology and observing its effect with varying energy levels may tell us 

how the topology of the space evolves as the protein goes through high energy barriers. It can produce interesting 

results and help in designing of conformational landscapes for targeted drugs. Refining these methods to produce 

finer samples and study the significance of fleeting high energy conformations is the goal ahead. Hierarchical 

clustering merges (or splits) two sets of conformations based on the heterogeneity of the entire set. In the future, we 

aim to develop a method to bias this divide in a way that is more suited for protein datasets. Molecules that undergo 

rigorous changes in structure are the ones more suited for such work. In particular, having known intermediates 

would help in guiding the conformational pathway search problem as well. It can divide the search space into smaller 

instances of the same problem. This is also a portion of the ongoing research. 
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