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Abstract 

The management and monitoring of land use in geothermal fields are crucial for the sustainable utilization of water 

resources, as well as for striking a balance between the production of renewable energy and the preservation of the 

environment. This study primarily compared Support Vector Machine (SVM) and Random Forest (RF) machine learning 

methods, using satellite imagery from Landsat 8 and Sentinel 2 between 2021 and 2023, to monitor land use in the 

Patuha geothermal area. The objective is to improve sustainable water management practices by accurately categorizing 

different land cover types. This comparative analysis assessed the efficacy of these techniques in upholding water 

sustainability in geothermal regions. This study examined the application of SVM and RF machine learning techniques, 

with particular emphasis on parameter refinement and model assessment, to enhance land use classification accuracy. By 

employing Kernlab and e1071 for algorithm comparison, the research sought to produce a precise Land Use Model Map, 

which underscores the significance of advanced analytical techniques in environmental management. This approach was 

of utmost importance in improving land use monitoring and reinforcing sustainable practices. The comparative 

evaluation of SVM and RF methods for land use classification demonstrates the superiority of RF in terms of accuracy, 

stability, and precision, particularly in intricate urban settings, hence establishing it as the preferred model for tasks 

demanding high reliability. The application of SVM and RF for monitoring land use in geothermal areas is in alignment 

with Sustainable Development Goals (SDGs) 6 and 15, as it fosters sustainable water management and the conservation 

of ecosystems. 
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1. Introduction 

Effective water resource management is crucial at geothermal sites to balance energy production with 

environmental stewardship. Geothermal energy production involves extracting heat from deep within the earth and 

often needs significant amounts of water for tasks like stimulating reservoirs, extracting heat, and generating 

electricity [1]. Chandrasekharam et al. (2020) emphasize the critical role of water resource management in geothermal 

energy production [2]. Furthermore, adept water management promotes sustainable development and improves water 
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security, especially in water-scarce countries such as MENA and Sub-Saharan Africa. As a result, a careful water 

resources management strategy is required to limit impacts on critical groundwater systems, ensuring the sustainability 

of the geothermal industry and the health of local ecosystems [3–6]. 

Efficient land use management is crucial for sustainably preserving water resources in geothermal areas [7]. Land 

use management can support the regulation of surface water flow. Surface water flow must be properly regulated to 

ensure water quality and availability, meet geothermal energy production requirements, and support local ecosystems. 

Thus, integrating land use management and water sustainability strategies is crucial to supporting the productivity and 

sustainability of geothermal operations. Cheng et al. (2022) underlined the importance of varied land uses, such as 

agriculture and urban growth, for water quality and sustainability. It emphasizes the significance of smart land use 

management to avoid negative impacts on water resources, which is crucial for sustaining sustainable geothermal 

output [8]. It is crucial to preserve water supplies for future generations while also maintaining the hydrological 

balance required by the geothermal industry and neighboring ecosystems. As a result, incorporating this land use 

strategy into geothermal development plans is crucial, emphasizing the critical relationship between land preservation 

and the conservation of water resources [9, 10]. 

Land use monitoring and management heavily rely on satellite imagery to obtain accurate spatial information 

crucial for effective planning [11]. Satellite systems like Landsat 8 and Sentinel 2 are invaluable [12–14]. Landsat 8's 

Operational Land Imager (OLI) is widely employed in supervised land cover categorization in plantations, as proven 

in Anua et al.'s (2021) research, highlighting its usefulness in recognizing and managing distinct land cover types for 

sustainable land use planning [15]. Sentinel 2's multispectral instruments have a broad range of applications; according 

to Phiri et al. (2020), they are crucial in monitoring agricultural, urban, and areas prone to natural hazards [16]. From 

the Sentinel-2 image data, an approach was made to the NDVI, NDBI, and NDWI spectral indices. In the study 

conducted by Hu et al. (2023), the Normalized Difference Vegetation Index (NDVI) is proposed as a viable method 

for delineating vegetation areas, such as agriculture and forests [17]. Muhaimin et al. (2020) utilized NDBI to 

accurately map the density of built-up areas, indicating varying levels of built-up area density through different 

Normalized Difference Built-up Index (NDBI) values [18]. Additionally, Patil et al. (2024) demonstrated the effective 

use of the Normalized Difference Water Index (NDWI) in differentiating water bodies by harnessing specific spectral 

bands from Sentinel 2 satellite imagery. This research underscored the significance of NDWI in precise water body 

mapping and classification for land use monitoring [19]. Integrating spectral indices such as NDVI, NDBI, and NDWI 

is important in accurately identifying and distinguishing agricultural land, urban zones, and water bodies, thus 

significantly increasing the precision in monitoring and managing these land resources [20, 21]. This approach 

improves the accuracy of land use maps and actively contributes to the sustainable management of vital environmental 

resources, thereby supporting broader water and geothermal resource sustainability goals [22, 23]. 

Machine Learning (ML) methods such as Support Vector Machine (SVM) and Random Forest (RF) algorithms 

have been adopted to develop models efficiently in geothermal land use [24, 25]. Xie et al. (2021) employed a Support 

Vector Machine (SVM) in their study to assess and monitor land use alterations on the Crozon Peninsula in Brittany, 

France. This investigation enhances comprehension of the frequency and repercussions of such modifications, 

demonstrating SVM's capacity to map and oversee land use change dynamics effectively. Consequently, this research 

provides valuable insights concerning land use adaptation and its environmental implications. Furthermore, Xie et al. 

(2021) also highlighted the utility of the Random Forest (RF) approach in modeling land use for groundwater 

surveillance in geothermal zones [26]. In a related study by Chen et al. (2022), RF was explicitly selected due to its 

proficiency in handling extensive datasets and complex relationships, rendering it an efficient instrument for managing 

geothermal and water resources. The amalgamation of these two algorithms plays a pivotal role in enhancing the 

precision and efficacy of monitoring and supervising water and geothermal resources [27]. 

Refinement of parameters in Machine Learning (ML) algorithms such as Support Vector Machine (SVM) and 

Random Forest (RF) is crucial for enhancing model efficiency and accuracy, particularly in monitoring land use in 

geothermal fields. For SVM, parameter tuning involves adjusting the Cost C, which balances model complexity 

against misclassifications; the Hyperparameter (sigma), which determines the Gaussian kernel's width in non-linear 

SVMs; and the Number of Support Vectors, which affects computational costs when increased. In geothermal land 

monitoring, the precise setting of these parameters ensures that the SVM can effectively handle the unique land cover 

characteristics typical of geothermal areas [28–31]. Meanwhile, tuning in the RF algorithm includes optimizing the 

Training Error, mtry (the number of variables considered at each node split), and the number of trees, significantly 

influencing the algorithm's ability to predict and classify complex geothermal land use patterns accurately. Adjusting 

these parameters ensures optimally that RF models are accurate and efficient in real-world applications [32–34]. 

Parameter adaptation in Machine Learning (ML) is critical for improving the performance and precision of models, 

especially when analyzing land usage in geothermal fields imaging data. The assessment of feature importance 

(VarImp) is significant in this context because it helps identify the most important variables that discriminate between 

different types of land uses, such as possible geothermal sites, conservation areas, or extraction zones. Understanding 
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which features most substantially determine the decision boundaries between these land use classifications can help 

guide SVM parameter adjustment. Similarly, in the RF algorithm, recognizing the most influential features in the 

decision tree's construction enhances land use classification accuracy. Thus, comprehending the influence of these 

variables through feature importance is essential for making informed adjustments to the model parameters, thereby 

ensuring more accurate and effective monitoring of land use in geothermal environments [35, 36]. 

Assessing land use models is essential for evaluating their effectiveness in geothermal field applications. Various 

metrics, such as the confusion matrix, Overall Accuracy (ACC), Kappa Coefficient (KC), Sensitivity, and Specificity, 

play key roles in this evaluation [37, 38]. The confusion matrix offers a detailed view of the model's classification 

accuracy by showing true positive and negative classifications, facilitating the calculation of other important metrics 

like ACC, which indicates the overall proportion of correct classifications. The KC provides insight into how the 

model performs better than random classification, which is essential for understanding model reliability in complex 

geothermal landscapes. Sensitivity and Specificity are crucial for assessing the model’s accuracy in identifying 

geothermal-related land uses specifically, with Sensitivity focusing on correctly identifying relevant land use classes 

and Specificity on accurately ignoring non-relevant classes. Utilizing these metrics gives a comprehensive insight into 

the performance of SVM and RF models in managing and monitoring land use in geothermal areas [39]. 

Evaluating machine learning algorithms through software packages like Kernlab and e1071 is crucial in assessing 

their effectiveness for specific applications, such as monitoring land use in geothermal fields. These tools provide 

comprehensive frameworks for performance evaluation, parameter tuning, and comparative analysis, which are vital 

in a geothermal context where data characteristics can be complex and highly variable. Using Kernlab and e1071, 

researchers can fine-tune models to optimize accuracy and resource efficiency, which is crucial for effective 

management and monitoring of geothermal land use. This detailed analysis helps determine the most suitable 

machine learning model to handle the unique challenges of thermal variations and land cover classifications in 

geothermal areas [40]. 

This article introduces a comprehensive study on enhancing sustainable water management in geothermal fields 

through advanced land use monitoring techniques, leveraging Support Vector Machine (SVM) and Random Forest 

(RF) algorithms. The approach precisely classifies various land cover types, supporting conservation efforts and 

promoting responsible water use within geothermal projects. This research is strongly aligned with the Sustainable 

Development Goals, including SDG 6, which focuses on guaranteeing universal access to potable water and 

sustainable management of water resources, and SDG 15, which stresses the conservation and sustainable use of 

terrestrial ecosystems. The article's methodology part will go over the data sources analyzed, the methodologies 

employed, the model assessment criteria, and a comparison of the applicable machine learning approaches. It 

highlights the utilization of training data derived from NDVI (Normalized Difference Vegetation Index), NDBI 

(Normalized Difference Built-up Index), and NDWI (Normalized Difference Water Index) as foundational elements 

for these models. Furthermore, this paper discusses implementing these models using E1071 and Kernlab tools, 

chosen for their precision, in determining the best method based on accuracy and kappa values. The results and 

discussions will delve into the techniques and methods applied, ultimately interpreting how these land use outcomes 

support the preservation of sustainable water resources in geothermal fields and contribute crucially to groundwater 

conservation and the advancement of SDGs 6 and 15. This introduction sets the stage for a detailed exploration aimed 

to understand and enhance land use strategies to underpin water sustainability initiatives, thereby fostering a 

sustainable future [19, 41, 42]. 

2. Methods 

2.1. Study Area 

The research site is within the Patuha geothermal field in the Bandung Regency of Indonesia, covering 25 km2. The 

geothermal fields spread from the Rancabali to Pasirjambu sub-districts, encompassing an area of 351.9 km2. Figure 1 

depicts the map of the research area. 

2.2. Data 

The study utilized Landsat 8 and Sentinel-2 Surface Reflectance image data, and administrative areas. The Landsat 8 

image data radiometric correction using ENVI 5.3 was then used as input data in Rstudio for the Machine Learning (ML) 

stage [43]. Sentinel-2 Surface Reflectance image data is processed through Google Earth Engine, so there were three data 

obtained, namely, Normalized Difference Forest Index (NDVI), Normalized Difference Built-up Index (NDBI), and 

Normalized Difference Water Index (NDWI). These datasets served as reference points for training data and were further 

processed using ArcMap 10.8, resulting in training data points in shapefile format. The ML method stage can be continued 

by using the corrected Landsat-8 image data and training data points as input data in Rstudio [22, 44, 45]. 
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Figure 1. Research Area Map-Patuha Geothermal Field 

2.3. Training Data 

Training data was acquired using Normalized Difference Forest Index (NDVI), Normalized Difference Built-up Index 

(NDBI), and Normalized Difference Water Index (NDWI) data [22, 23, 46]. The Normalized Difference Forest Index 

(NDVI) is a valuable tool for analyzing land use, particularly in forest areas and agricultural plantations. NDVI is 

calculated using near-infrared (NIR) and visible (red) light, providing information on Forest density in the area. The 

formula of NDVI = (NIR-RED)/(NIR+RED) [22]. The Normalized Difference Built-up Index (NDBI) represents a 

specialized remote sensing tool widely used to analyze built-up or urban areas in land use studies. NDBI utilizes the 

spectral reflectance properties of built-up materials, which are distinct from natural land cover types. Built-up regions 

generally reflect more in the short-wave infrared (SWIR) band than genuine covers. On the other hand, these areas reflect 

less in the near-infrared (NIR) band. NDBI leverages this difference using the formula NDBI = (SWIR - NIR) / (SWIR + 

NIR) [23]. The Normalized Difference Water Index (NDWI) derived from remote sensing is often used to monitor and 

analyze water bodies associated with land use. NDWI is calculated using specific bands from satellite data that measure 

reflectance in the electromagnetic spectrum's green and near-infrared (NIR) portions. The formula for NDWI is typically 

(Green - NIR) / (Green + NIR), with variations depending on the satellite data used. NDWI distinguishes water bodies 

from other land surfaces due to water's absorbance and low radiation from visible to infrared wavelengths [47]. The 

training data was determined based on threshold data presented in Table 1. 

Table 1. Training Data for Land Use Based on NDVI, NDBI, and NDWI [22, 23, 46] 

Land Use Type NDVI NDBI NDWI 

Forest >0.7 - - 

Agriculture and Plantation 0.65-0.7 - - 

Built-up - >0.2 - 

Water Bodies - - >0.5 

2.4. Workflow Scenario 

The workflow diagram (Figure 2) presents a methodical process for producing a land use model map. It starts with 

sourcing data from Landsat 8 OLI/TIRS Level 1 for the years 2021 to 2023, which undergoes radiometric calibration and 

preprocessing, including Dark Subtraction (DOS) and subsetting by Region of Interest (ROI) [48, 49]. The training and 

testing data were obtained from Sentinel 2 Surface Reflectance data for the same years. The focus was on indices such as 

NDVI for agriculture and Forest, NDBI for built-up areas, and NDWI for water bodies [22, 23, 46, 47]. The data was split 

into 70:30 for training and testing. Parameter tuning is conducted for machine learning (ML), and feature importance is 

assessed for both methods [50, 51]. The SVM algorithm uses the parameters cost c, hyperparameter sigma, number of 

support vectors, and training error. In contrast, the RF algorithm uses the parameters mtry, number of trees, number of 

variables tried at each split, and OOB estimate of error rate [52–55]. The model is then evaluated using a confusion matrix 

and Cohen's Kappa to assess accuracy [56, 57]. The map produced by the land use model is informed by algorithm 

evaluation metrics, such as Kernlab and e1071 [58]. 
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Figure 2. Workflow Diagram 

2.5. Parameter Tuning 

The optimization of models' performance through the adjustment of hyperparameters is essential in parameter tuning for 

ML models. SVM incorporates parameters such as Cost C, a regularization parameter that balances the need to model the 

training data accurately and keep the model simple for good performance on unseen data [50]. The sigma hyperparameter 

determines the kernel coefficients and influences the impact of a single training example on defining the decision boundary 

[59]. The number of support vectors indicates the examples used to define the decision boundary [60]. Training error 

reflects the model's performance on the training dataset. A low training error indicates that the model has learned well from 

the training data [61]. RF uses parameters such as 'mtry,' which determines the number of features considered when 

searching for the best split at each tree node and the number of trees, which increases the accuracy of the model to a certain 

extent [62]. The 'Number of Variables Attempted at Each Split' parameter guides the algorithm to consider many variables 

in the decision process, while the Out-of-Bag (OOB) error rate estimate provides an unbiased picture of the model's 

accuracy [51]. 

2.6. Feature Importance 

The Variable Importance (VarImp) measure in machine learning algorithms ranks the importance of different 

predictors in the model. For SVM, the VarImp might be determined based on the weights assigned to the features in 

the separating hyperplane. Larger weights indicate greater importance. In RF, VarImp is typically assessed by the 

decrease in model accuracy or increase in node purity when a feature is permuted, which reflects its contribution to the 

predictive power of the model. Features with high VarImp scores are more crucial for the model's decision-making 

process [63, 64]. 

2.7. Support Vector Machine (SVM) 

SVM is an advanced and adaptable supervised machine learning technique that is commonly used for classification 

and regression applications. At its heart, SVM seeks the ideal hyperplane that optimally separates data points of 

distinct classes in the feature space [65]. For data that can be separated linearly, this hyperplane is a line (in two 

dimensions) or a plane (in three dimensions) that maximizes the margin between the two classes. In situations when 

data cannot be separated linearly, SVM employs a method known as the kernel trick. This strategy entails mapping the 

data onto a higher dimensional space, where a hyperplane may effectively separate [66, 67]. Figure 3 illustrates the 

concept of SVM. 
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Figure 3. Concept of SVM Algorithm [68] 

2.8. Random Forest (RF) 

RF is an ML algorithm known for its versatility and accuracy in handling categorization and regression tasks. It 

belongs to the ensemble learning family, which integrates predictions from multiple algorithms to enhance overall 

predictive accuracy. The algorithm is based on decision trees and employs a technique known as bootstrap aggregation 

(or bagging) to create a forest of trees. Each tree is built from a random selection of data and characteristics. This 

method adds variation to the trees and decreases the possibility of overfitting, which is a typical issue in individual 

decision trees. During prediction, RF aggregates the outcomes of all trees, usually by majority voting for classification 

or averaging for regression, to arrive at a final prediction. This method enhances forecast accuracy and gives insight 

into the significance of variables, making it useful for a variety of applications, notably in the energy and industrial 

sectors. Despite its strengths, RF may be less intuitive to interpret than a single decision tree and require substantial 

computational resources, mainly when dealing with large datasets. Figure 4 illustrates the concept of RF [51, 69]. 

 

Figure 4. Concept of RF Algorithm [68] 

2.9. Model Evaluation and Accuracy Assessment 

Model evaluation methods are critical for determining the efficacy of ML in land use prediction models. These 

methods shed light on how good these models are in classifying and predicting various land uses. RF and SVM are 

well-known for their ability to handle complicated, multivariate datasets such as those used in land use studies.  

However, the accuracy and reliability of predictions depend heavily on the appropriate choice and application of 

model evaluation techniques. These methods determine the extent to which models accurately represent real-world 

phenomena they predict [51, 70]. 

The confusion matrix (CM) is an essential evaluation tool in ML, particularly for classification models such as 

SVM and RF A. The table compares the actual and predicted classifications to assess a model's performance. The 
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matrix is divided into four segments: True Positives (TP), True Negatives (TN), False Positives (FP), and False 

Negatives (FN). While TP and TN represent the correct predictions for the positive and negative classes, respectively, 

FP (Type I errors) and FN (Type II errors) represent the errors made by the model [58, 71]. Table 2 is the confusion 

matrix table. 

Table 2. Confusion Matrix (CM) [72] 

Actual/Predicted Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

CM is an important technique for evaluating the performance of classification models. Overall Accuracy (ACC) 

is a measure of the model's overall efficacy across all classes. It is derived as the ratio of accurate predictions (TP 

and TN) to total predictions produced. This metric provides a holistic view of the model's performance, 

encompassing its success rate across all categories [23, 73, 74]. In contrast, User Accuracy (UC), which is 

sometimes confused with precision in binary classifications, focuses on the model's predictions for a given class. It 

is calculated for each class by dividing the number of correct predictions for that class by the total number of 

instances predicted as belonging to that class. This metric is especially useful for assessing how effectively the 

model recognizes each class, emphasizing its precision in differentiating one class from others [75, 76]. The Kappa 

Coefficient (KC) is a statistical measure that compares observed and expected accuracy, which would be the 

accuracy if predictions were made randomly. It accounts for the possibility of a correct prediction occurring by 

chance, providing a more robust view of the model's performance, especially in cases where class distribution is 

imbalanced [77, 78]. Sensitivity and specificity are essential metrics for evaluating binary classification models. 

Sensitivity indicates the proportion of real positive instances detected by the model, whereas specificity measures 

the proportion of actual negative cases. There is often a trade-off between sensitivity and specificity, and choosing 

the optimal balance depends on the specific needs of the application domain [79]. The formula of ACC, UC, KC, 

Sensitivity, and Specificity are presented in Equations 1 to 6 [58, 80]: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑈𝐶 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

 (2) 

𝐾𝐶 =
𝐴𝐶𝐶 − 𝑃𝑒

1 − 𝑃𝑒

 (3) 

𝑃𝑒 = ∑
(𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙𝑠∗𝑐𝑜𝑙𝑜𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠2  (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

2.10. Algorithm Evaluation 

R’s Kernlab and e1071 packages are essential for comparing SVM and RF algorithms. Kernlab provides a variety 

of kernel-based methods, especially for SVM, enabling a nuanced approach to model training and fine-tuning. It can 

handle various data types and structures, making it versatile for complex model comparisons. The e1071 package 

provides SVM capabilities and diverse ML tools that help compare different algorithms. It facilitates model training, 

parameter optimization, and validation across other methods. Using these packages, one can thoroughly evaluate the 

performance of SVM compared to RF. It includes analyzing accuracy, precision, and the capability to perform 

generalization from training data to unseen data. Such a comparison can reveal each method's inherent strengths and 

limitations, helping to select the most appropriate algorithm for a given dataset or problem [81, 82]. 

3. Results and Discussion 

3.1. Training Data 

The training data used in this study are NDVI, NDBI, and NDWI data. NDVI data is used for land use, especially 

for forests, agriculture, and plantations. NDBI data is used on land use, mainly built-up. At the same time, NDWI data 
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is used for land use, especially water bodies. Figure 5 shows the NDVI, NDBI, and NDWI data overlayed with the 

training data points for each land use type. Based on Table 3, the training data used for forests with NDVI values 

greater than 0.7. NDVI is calculated using visible and near-infrared light reflected by vegetation. This index is vital for 

monitoring plant health because healthy plants absorb visible light and reflect near-infrared light [83, 84]. Research by 

Xue et al. (2021) shows that high NDVI values usually indicate dense and healthy vegetation, generally found in forest 

areas, while moderate NDVI values may indicate agricultural areas where vegetation density varies. In this study, the 

forest NDVI value interval ranged from 0.79 to 0.84 [85]. In this study, the forest NDVI value was greater than 0.7. 

These values indicate robust plant health and play a pivotal role in maintaining hydrological cycles and regulating 

surface water resources, which are crucial for sustaining geothermal activities. Forests act as natural reservoirs storing 

water, crucial for recharging groundwater and managing surface water flow, ultimately impacting the stability of 

geothermal processes [86]. The study conducted by Xue et al. (2021) shows that the NDVI values for agricultural land 

usually range from 0.69 to 0.75 [85]. In agricultural and plantation regions, the authors observed NDVI values ranging 

from 0.65 to 0.7. These moderate values represent the many crop kinds and growth phases seen in these locations and 

are required for the implementation of precision agricultural techniques. Precision agriculture optimizes water 

consumption and improves overall water resource stability in geothermal fields and local ecosystems by tailoring 

irrigation and fertilization tactics based on NDVI data [86]. 

The Normalized Difference Built-up Index (NDBI) is calculated to highlight urban land cover by analyzing the 

reflection properties of built-up materials in the short-wave infrared spectrum [87]. As Muhaimin et al. (2020) 

demonstrated, NDBI effectively maps urban density variations, which are crucial for urban planning and 

environmental management [18]. In this study, areas with an NDBI value greater than 0.2 were classified as built-up, 

indicating significant urban development. Urban expansion typically increases impervious surfaces, contributing to 

higher runoff and reduced groundwater recharge. These changes have profound implications on both surface and sub-

surface water systems, which are essential for the efficiency and sustainability of geothermal energy operations. The 

ability of NDBI to detect urban materials such as concrete and asphalt makes it an essential tool for monitoring urban 

sprawl and guiding strategic water resource management. By integrating NDBI data into urban development plans, 

planners can more effectively balance urban growth with environmental conservation, enhancing the sustainability of 

local and broader ecosystems and ensuring that geothermal operations are supported by adequate water management 

practices [88, 89]. 

Normalized Difference Water Index (NDWI) is widely used in remote sensing to identify and monitor water 

features such as lakes, rivers, and reservoirs. NDWI utilizes green and near-infrared light to enhance the presence of 

water in satellite images [90]. Patil et al. (2024) demonstrated the effective use of the Normalized Difference Water 

Index (NDWI) in differentiating water bodies by harnessing specific spectral bands from Sentinel 2 satellite imagery. 

This research underscored the significance of NDWI in precise water body mapping and classification for land use 

monitoring [19]. In this research, water bodies present distinct signatures on this index, with values greater than 0.5 

typically indicating water bodies. This high sensitivity to the presence of water makes NDWI particularly valuable for 

water resource management, aiding in the detection and monitoring of water bodies, which is essential for environmental 

conservation and planning [91, 92]. 

 
Figure 5. Training Data 



Journal of Human, Earth, and Future         Vol. 5, No. 2, June, 2024 

224 

Table 3. Total Training Data based on Land Use Type 

Land Use Type 
Interval Values Total Training Data 

(per year) NDVI NDBI NDWI 

Forest >0.7 - - 350 

Agriculture and Plantation 0.2-0.7 - - 325 

Built-up - >0.2 - 275 

Water Bodies - - >0.5 250 

3.2. Parameter Tuning 

Parameter optimization for the Support Vector Machine (SVM), as shown in (Table 4), from 2021 to 2023, 

demonstrates a strategic balance in model tuning. The consistent setting of the Cost C parameter at 1 indicates a targeted 

equilibrium between the model's complexity and its fitting accuracy to the training data. Concurrently, the sigma 

hyperparameter has been adjusted downward from 2.11 to 1.41, suggesting a refined influence of the kernel on the model's 

decision boundary, potentially enhancing the precision of classifications. The count of support vectors defining this 

boundary has varied from 272 to 230 and then slightly increased to 240. This variability indicates adjustments in the 

model’s complexity and adaptability to new data patterns. The training error rates have remained low and stable, 

underscoring the model’s robust performance across different datasets. Understanding these parameters' roles and impacts 

helps apply SVM more effectively in complex scenarios, where model accuracy and generalizability are crucial [60, 61]. 

Table 4. Parameter Tuning of SVM 

Parameter Tuning 2021 2022 2023 

Cost C 1 1 1 

Hyperparameter (sigma) 2.11 1.23 1.41 

Number of Support Vectors 272 230 240 

Training error 0.06 0.07 0.07 

In applying the Random Forest (RF) method, detailed in Table 5, the 'mtry' parameter, which specifies the number of 

features considered at each tree split, has varied from 2 to 7 and reverted to 2. This fluctuation represents adaptive 

strategies to enhance model accuracy by exploring different complexities in feature selection. Despite these changes, the 

number of trees has been maintained at 500 to ensure the stability and robustness of predictions. Correspondingly, the Out-

of-Bag (OOB) error rate, serving as an internal validation measure to estimate prediction error, peaked at 7.5% before 

reducing to 6.79%. These oscillations in the OOB error rate indicate the model's sensitivity to changes in 'mtry' and give 

information about the best configuration for certain data sets. Such thorough parameter adjustment is critical for 

applications that need high model accuracy, such as ecological modeling or disease prediction. Understanding the 

implications of these settings can guide practitioners in refining RF models to achieve higher precision in diverse analytical 

contexts [51, 62]. 

Table 5. Parameter Tuning of RF 

Parameter Tuning 2021 2022 2023 

mtry 2 7 2 

Number of Trees 500 500 500 

Number of Variables Tried at Each Split 2 7 2 

OOB Estimate of Error Rate 6.56 7.5 6.79 

3.3. Feature Importance 

The varImp function in R is a crucial tool for evaluating the importance of predictor variables in machine learning 

models, particularly Random Forest (RF) and Support Vector Machines (SVM). For RF models, varImp assesses each 

variable's importance based on the impact of its permutation on model accuracy and node purity—a measure of how 

well each split in a decision tree classifies the data. This process helps identify which features significantly influence 

the model’s predictive accuracy. In the context of SVM, determining variable importance is more nuanced due to the 

model's structure. Techniques such as calculating the squared coefficients of linear SVMs or employing Recursive 

Feature Elimination (RFE) are utilized. RFE, for instance, iteratively removes features to assess their impact on model 

performance, providing a systematic approach to feature selection. Given the diversity of methods and their 

dependence on specific model types and R packages, thoroughly understanding of how these variable importance 

assessments are implemented is paramount for effectively interpreting their outcomes in practical applications [93–98]. 
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The SVM algorithm's performance in land use classification for water bodies has shown notable variations in the 

importance of spectral features over the years. The classification heavily relied on bands 6 (SWIR1), 1 

(Coastal/Aerosol), and 7 (SWIR2)—with Band 6 being particularly sensitive to moisture content, thus distinguishing 

water from land by capturing the higher absorption rates in the SWIR spectrum. Band 1 was instrumental in 

identifying fine particulate matter in water, distinguishing between clear and turbid water conditions, while Band 7 

enhanced water detection by penetrating atmospheric obstructions like haze. The focus shifted in 2022 to include 

bands 6, 5 (NIR), and 7. Band 5's sensitivity to water absorption helped further differentiate water bodies from 

vegetation and urban areas, a crucial factor in precise land mapping for sustainable water resource management in 

geothermal fields. By 2023, the emphasis on bands 5, 3 (Green), and 6 emphasized the changing technological 

capabilities and environmental monitoring requirements; Band 3's capacity to detect water's absorption of green light 

made it a critical feature in differentiating aquatic from terrestrial surfaces. These changes reflect significant 

advancements in remote sensing technology and highlight the critical role of spectral analysis in supporting the 

conservation and sustainable management of water resources within geothermal fields, aligning with broader 

environmental monitoring and sustainability goals [99, 100]. 

Leveraging Landsat 8 imagery for land use classifications is pivotal in forest analysis, employing specific bands 

known for their unique spectral responses to effectively assess forest health and density. This dependency has 

developed over the years, reflecting advances in remote sensing technologies as well as shifting environmental 

monitoring requirements. In 2021, Bands 4 (Red), 3 (Green), and 5 (NIR) were useful for recognizing healthy 

vegetation, defining forest borders, and estimating forest density. The focus shifted in 2022 to include Band 2 (Blue) 

for its ability to detect shadows and moisture, enhancing differentiation between forested and non-forested areas, while 

Band 3 continued to highlight healthy vegetation and Band 1 (Coastal/Aerosol) became crucial for evaluating 

atmospheric effects on forest visibility. By 2023, the importance of Band 4 in chlorophyll absorption remained critical 

for vegetation health identification; Band 2 was pivotal in providing textural details due to its moisture and shadow 

sensitivity, and Band 1 was essential for atmospheric corrections to improve forest health assessments. This expanding 

understanding is vital for establishing adaptive forest management techniques that respond to changing climatic 

circumstances and enable sustainable water resource management in geothermal fields, thus improving conservation 

efforts and maintaining ecological balance [101, 102]. 

Over recent years, Landsat 8 imagery has been instrumental in enhancing land use classifications for built-up areas, 

providing vital data for urban planning and environmental sustainability. In 2021, bands 6 (SWIR1), 7 (SWIR2), and 4 

(Red) were pivotal for assessing urban buildings because to their sensitivity to urban materials and their ability to 

differentiate them from natural landscapes. The SWIR bands, sensitive to moisture, contrast sharply with the reflective 

properties of built-up areas, while the Red band, absorbing chlorophyll, helps to separate vegetation from artificial 

structures. In 2022, the focus shifted to bands 6, 5 (NIR) and 7, which collectively improved the differentiation of 

urban from natural areas by capturing variances in vegetation presence and moisture content. By 2023, bands 5 (NIR), 

2 (Blue), and 1 (Coastal/Aerosol) were highlighted for their unique capabilities to refine urban analysis further. NIR 

and Blue bands were crucial for discerning built-up areas from vegetation and enhancing shadow differentiation, 

which is important for detailed urban texture mapping. The coastal/aerosol band played a significant role in 

atmospheric correction, crucial for clarifying urban features. These spectral insights aid in precise urban mapping and 

support sustainable urban planning, which is crucial for managing water resources effectively in geothermal fields. 

Such planning helps mitigate the impact of urban expansion on local hydrology, which is essential for conserving 

water and maintaining the integrity of geothermal operations [103, 104]. 

Landsat 8 imagery plays a pivotal role in the detailed monitoring of agricultural lands, utilizing specific bands 

tailored to discern various aspects of agricultural health and land management over different years. In 2021, bands 1 

(Coastal/Aerosol), 2 (Blue), and 4 (Red) were crucial, with Band 1 enhancing atmospheric corrections for clearer 

feature detection, Band 2 distinguishing between water bodies and crop types by sensing soil characteristics, and Band 

4 identifying healthy vegetation through chlorophyll absorption. These bands collectively improved the detection of 

variations within agricultural landscapes. The focus in 2022 shifted to bands 7 (SWIR2), 1, and 3 (Green), where Band 

7’s ability to detect moisture content became invaluable for assessing soil health and irrigation needs. Band 1 

continued to provide atmospheric corrections, and Band 3 highlighted plant vigor by detecting reflected green light. 

By 2023, the emphasis on bands 2, 3, and 1 for agriculture and plantation underscored their roles in enhancing soil and 

crop residue contrast, assessing plant health, and providing atmospheric corrections. These spectral analyses aid in 

precise crop condition assessments and contribute to water conservation strategies crucial in geothermal fields. 

Enhanced monitoring promotes optimum irrigation methods, minimizing wasteful water usage and contributing to the 

balance of local hydrological cycles, therefore maintaining the integrity and sustainability of both agricultural and 

geothermal resources (see Figure 6) [64, 105]. 
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Figure 6. Feature Importance of SVM Model (a) 2021 (b) 2022 (c) 2023  

The utilization of the Random Forest (RF) technique for land use classification within geothermal areas leverages 

the unique spectral sensitivities of Landsat bands 7 (shortwave infrared 2), 3 (green), and 6 (shortwave infrared 1), 

which have proven particularly effective by 2023. Band 7's sensitivity to moisture variations is crucial for detecting 

subtle changes in soil moisture that may indicate geothermal activity (Figure 7). At the same time, Band 3 enhances 
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the visibility of vegetation, aiding in the differentiation of land covered by natural flora from geothermally altered 

terrains. Band 6 excels at penetrating particles in the atmosphere, resulting in sharper views of the ground surface, 

which is critical for accurate mapping in steam-rich geothermal areas. Together, these bands create a powerful toolkit 

for recognizing geothermal characteristics, which contributes greatly to water resource conservation by allowing for 

accurate monitoring and regulation of land use in vulnerable locations. This tailored approach ensures the 

sustainability of geothermal operations and protects the surrounding ecosystem by mitigating adverse environmental 

impacts [93–96]. 

 

Figure 7. Feature Importance of RF Model 

These technologies provide critical data that enable the conservation and sustainable management of natural and 

human-altered landscapes, ranging from monitoring agricultural vitality and forest health to recognizing built-up areas 

and water bodies. In geothermal fields, the precise application of these spectral analyses helps manage water resources 

effectively, ensuring the sustainability of energy production while protecting ecological balance. By continuously 

adapting to technological advancements and environmental changes, these spectral bands enhance the understanding 

of the earth's surface and empower policymakers and conservationists to make informed decisions aimed at long-term 

sustainability. Each application, whether focused on agriculture, water bodies, urban features, or geothermal 

monitoring, contributes to a holistic approach to environmental stewardship, underlining the critical integration of 

advanced remote sensing technology with strategic land management practices [25, 79]. 

3.4. Land Use Model Using SVM Algorithm Method 

Using the SVM approach to monitor land use changes between 2021 and 2023, the authors detect major 

consequences for water sustainability in geothermal areas (Figure 8 and Table 6). The decrease in agricultural and 

plantation areas from 46.85% to 45.54% reflects water usage and runoff changes, crucial for managing aquifer 

depletion and maintaining the thermal balance essential for geothermal energy production. Concurrently, a growth in 

built-up areas means more impermeable surfaces, which reduces groundwater recharge and may contaminate runoff, 

affecting water quality, which is crucial to geothermal operations. The growth in forested areas from 4.84% to 6.26% 

enhances ecological conditions that stabilize groundwater levels and provide natural cooling, which benefits 

geothermal systems. Furthermore, fluctuations in water bodies increasing to 52.66% in 2022 and then decreasing to 

48.04% in 2023 highlight thermal and hydrological dynamics shifts that directly impact geothermal production. These 

findings highlight the need of integrated land and water management methods that balance agricultural, urban, and 

conservation initiatives with the operating requirements of geothermal energy systems. Adapting to these changes with 

enhanced remote sensing techniques, such as those given by the SVM approach, stakeholders may assure the 

sustainability of geothermal resources while conserving the surrounding ecology [106–109]. 

Table 6. Result of SVM Model 

Land Use 
2021 2022 2023 

Area (km2) Percentage of Area (%) Area (km2) Percentage of Area (%) Area (km2) Percentage of Area (%) 

Agriculture and Plantation 164.81 46.85 148.51 42.21 160.20 45.54 

Built-up 17.03 4.84 17.48 4.97 22.01 6.26 

Forest 169.39 48.15 185.26 52.66 169.01 48.04 

Water Bodies 0.57 0.16 0.56 0.16 0.58 0.16 
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Figure 8. SVM Model  

3.5. Land Use Model Using RF Algorithm Method 

In the study detailed in Figure 9, the RF algorithm provides a nuanced classification of land use changes from 2021 

to 2023, revealing significant fluctuations across various categories, as shown in Table 7. Agricultural and plantation 

areas saw a marked decrease of 7.77% from 50.93% in 2021 to 43.23% in 2022, followed by a recovery to 47.45% in 

2023, reflecting shifts in land management practices that potentially impact water usage and availability in geothermal 

areas. Conversely, built-up land consistently increased, rising from 4.56% in 2021 to 6% in 2023, suggesting an 

expansion of urban areas that typically reduces permeable surfaces, thereby affecting groundwater recharge and 

increasing surface runoff — factors critical to maintaining the thermal stability of nearby geothermal resources. Forest 

land exhibited significant fluctuations, increasing by 7.47% in 2022 before dropping by 5.39% in 2023; forests play a 

crucial role in regulating hydrological cycles and enhancing precipitation infiltration. Thus, their expansion or reduction 

can directly influence the water balance necessary for geothermal operations. The proportion of land occupied by water 

bodies decreased slightly from 0.21% in 2021 to 0.17% in 2022 before stabilizing in 2023, a change that, while small, is 

significant in geothermal contexts where even minor variations in water bodies can affect geothermal plants cooling and 

operational efficiency. These dynamics underscore the need for integrated land and water management strategies that 

address the demands of land use and ensure the sustainability of water resources vital for geothermal energy production 

[46, 110, 111]. 

Table 7. Result of RF Model 

Land Use 

2021 2022 2023 

Area 

(km2) 

Percentage of Area 

(%) 

Area 

(km2) 

Percentage of Area 

(%) 

Area 

(km2) 

Percentage of Area 

(%) 

Agriculture and Plantation 179.17 50.93 152.10 43.23 166.94 47.45 

Built-up 16.05 4.56 16.99 4.83 21.09 6.00 

Forest 155.84 44.30 182.13 51.77 163.17 46.38 

Water bodies 0.75 0.21 0.60 0.17 0.60 0.17 
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Figure 9. RF Model  

3.6. Model Evaluation and Accuracy Assessment 

The primary focus of the study is to evaluate the precision of SVM and RF models in classifying land use, which is 

crucial for effective environmental management in geothermal fields. The confusion matrices (CM) for both models 

give a thorough breakdown of the expected classifications compared to actual land use observations. For example, the 

2021 CM for the SVM model accurately predicts 82 occurrences for agricultural and plantation, 68 for built-up areas, 

98 for forest, and 70 for water bodies. Similarly, the RF model demonstrated a comparable accuracy with 84 

predictions for agriculture and plantation, 68 for built-up, 96 for forest, and 70 for water bodies. These findings are 

critical in determining the models' performance in identifying unique land uses, which is required for monitoring and 

controlling land use changes that influence water sustainability in geothermal areas. Precise classification aids in 

accurately mapping water bodies and vegetated areas, which are critical for maintaining the hydrological balance and 

ensuring the availability of adequate water resources for geothermal operations. The detailed results of these 

classifications are further elaborated in Table 8, illustrating the significant role of accurate land use mapping in 

supporting sustainable geothermal practices [37, 71, 106]. 

Machine learning methodologies, as quantified by their respective accuracy (ACC) scores, are crucial for assessing 

the performance of land use classification models. These scores indicate each model's ability to correctly identify and 

classify diverse land cover types—ranging from agricultural areas and urban developments to forests and water bodies. 

Over the period from 2021 to 2023, ACC scores for the SVM method were 0.89, 0.94, and 0.92, while the RF method 

consistently demonstrated higher accuracy with scores of 0.89, 0.95, and 0.95. The RF model's higher performance, as 

seen by comparing green bars peaking at an ACC of 0.95, demonstrates its increased competence in comprehensive 

and dependable land use categorization. Such precision in land use mapping is particularly significant for managing 

water resources in geothermal fields. Accurately detecting and monitoring land cover types influence water 

conservation strategies and the sustainable governance of natural resources. By ensuring accurate land cover 

classification, both models, mainly the RF, contribute to effective environmental surveillance and urban planning, 

which are critical in maintaining the ecological balance and supporting water sustainability in geothermal operations. 

These findings, detailed in Table 9, highlight the efficacy of these models and their practical implications for 

improving geothermal field management through precise land use monitoring [38, 112, 113]. 

The Kappa Coefficient (KC) is an important performance parameter in assessing land use classification models 

because it measures the degree of agreement between observed and anticipated classifications while controlling for the 

possibility of chance agreement. From 2021 to 2023, the SVM method recorded KC scores of 0.85, 0.92, and 0.9, 
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while the RF method showed superior performance with scores of 0.85, 0.93, and 0.93. These results, detailed in Table 

9, highlight the consistently higher accuracy of the RF method compared to the SVM method across the evaluated 

years. This enhanced precision is particularly significant in geothermal fields where accurate land use classification is 

critical for effective water resource management. Higher KC values indicate a more reliable model for predicting land 

cover changes directly affecting water runoff patterns, groundwater recharge, and overall water conservation 

strategies. The RF model's ability to precisely identify land use promotes better informed decisions in environmental 

planning and management, guaranteeing that actions to conserve water and preserve ecological balance in geothermal 

fields are based on exact and reliable data [11, 38]. 

Table 8. CM Results 

Algorithm Land Use Agriculture and Plantation Built-up Forest Water bodies 

2021 

SVM 

Agriculture and Plantation 82 9 7 0 

Built-up 7 68 0 5 

Forest 8 2 98 0 

Water bodies 0 3 0 70 

RF 

Agriculture and Plantation 84 10 9 2 

Built-up 9 68 0 3 

Forest 4 1 96 0 

Water bodies 0 3 0 70 

2022 

SVM 

Agriculture and Plantation 86 1 3 0 

Built-up 0 79 0 4 

Forest 11 1 102 1 

Water bodies 0 1 0 70 

RF 

Agriculture and Plantation 88 1 3 0 

Built-up 2 79 0 4 

Forest 7 0 102 0 

Water bodies 0 2 0 71 

2023 

SVM 

Agriculture and Plantation 86 3 6 0 

Built-up 3 75 0 3 

Forest 8 2 99 0 

Water bodies 0 2 0 72 

RF 

Agriculture and Plantation 93 5 4 0 

Built-up 2 73 0 2 

Forest 2 2 101 0 

Water bodies 0 2 0 73 

Table 9. ACC and KC Results 

Algorithm Model Evaluation 2021 2022 2023 

SVM 
ACC 0.89 0.94 0.92 

KC 0.85 0.92 0.90 

RF 
ACC 0.89 0.95 0.95 

KC 0.85 0.93 0.93 

Table 10 illustrates that the SVM and RF models exhibit robust performance across various land use categories, 
though with distinct strengths. For agriculture and plantation, the SVM model's User's Accuracy (UC) increases from 
0.84 to 0.91, reflecting its improved precision in classifying these crucial areas over time. In built-up areas, SVM 

shows significant progress, starting with a UC of 0.85 and rising to 0.95, indicating enhanced accuracy in urban 
classification—a key factor in urban water management by reducing impervious surfaces and promoting sustainable 
land development. SVM also maintains high UC values for forest and water bodies, with the latter reaching an 
impressive UC of 0.97, which is crucial for accurate water body mapping and directly impacts water conservation 
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strategies in geothermal fields. In contrast, the RF model consistently outperforms in categorizing water categories, 
with a UC of 0.97, demonstrating its capacity to accurately identify water bodies required for maintaining thermal 
balance and water quality in geothermal operations. The consistent high performance of RF across all categories 

ensures dependable land use data, which is essential for comprehensive environmental monitoring and sustainable 
resource management in geothermal regions. This precise classification is vital for implementing targeted conservation 
practices, managing hydrological cycles, and supporting geothermal sustainability initiatives [40, 114, 115]. 

Table 10. UC Results 

Algorithm Land Use 2021 2022 2023 

SVM 

Agriculture and Plantation 0.84 0.96 0.91 

Built-up 0.85 0.95 0.93 

Forest 0.91 0.89 0.91 

Water bodies 0.96 0.99 0.97 

RF 

Agriculture and Plantation 0.80 0.96 0.91 

Built-up 0.85 0.93 0.95 

Forest 0.95 0.94 0.96 

Water bodies 0.96 0.97 0.97 

The Sensitivity analysis of machine learning models, as shown in Table 11, underscores the robust performance of 
the RF model in accurately identifying true positives across various land use categories, which is crucial for effective 
environmental management in geothermal fields. RF displays commendable stability in agriculture and plantation 
categories, achieving a peak Sensitivity of 0.91. This high Sensitivity ensures that agricultural areas, critical for water 
management and conservation practices, are accurately monitored. Both models exhibit an upward trend in Sensitivity 
for built-up areas. RF slightly outperforms SVM with a Sensitivity of 0.96, indicating superior accuracy in detecting 
urban expansions that potentially impact water runoff and infiltration. In forest land use, RF's Sensitivity reaches 0.97, 
slightly higher than SVM, which is vital for preserving forest ecosystems that play a significant role in the 
hydrological cycle affecting geothermal sustainability. Both models show high Sensitivity scores of around 0.97 for 
water bodies, reflecting their effective detection capabilities crucial for managing water resources in geothermal 
operations. RF's excellent sensitivity ratings indicate its usefulness in precisely categorizing land use types, hence 
facilitating precise monitoring and management approaches that contribute to sustainable water usage and 
conservation measures in geothermal areas [116–118]. 

The comparative analysis of Specificity between SVM and RF models, as detailed in Table 11, showcases 
consistently high-performance levels across various land use categories, with Specificity values frequently nearing 
1.00. It indicates both models' outstanding ability to correctly identify true negatives, a crucial aspect for accurate land 
use classification. In the agriculture and plantation category, while SVM started with a Specificity of 0.94, RF initially 
displayed a slightly lower Specificity but improved significantly over time to match SVM's performance. Both models 
showed progressive improvements in built-up areas, with RF achieving a Specificity of 0.98, slightly higher than 
SVM's 0.96. This edge for RF suggests a more reliable exclusion of non-built-up areas, which is critical for urban 
planning and water runoff management. Both models also had exceptionally high Specificity in the forest and water 
body categories, with RF peaking at 0.99, suggesting their efficiency in preventing places outside these categories 
from being incorrectly categorized as such. These high Specificity ratings are especially essential in geothermal 
sectors, where exact land cover delineation is critical for effective water resource management and promoting 
sustainable environmental practices. By accurately identifying non-target areas, these models help optimize land 
management practices and conserve water by preventing unnecessary allocation of resources to incorrectly classified 
areas [40, 119, 120]. 

According to the data, the RF model consistently outperformed the SVM in most measures across the research 
period, with better ACC, KC, and Sensitivity scores. This superior performance is crucial for identifying precisely 
land use changes that directly impact water sustainability strategies in geothermal operations. For example, RF's high 
sensitivity in detecting water bodies, as well as its constant UC and specificity in categorizing agricultural and wooded 
terrain, guarantee that vital water conservation measures may be precisely targeted and implemented [46, 50]. 

These findings underscore the RF model's robustness in managing complex environmental data, making it a 
preferred choice for geothermal field management where precise land use classification aids in effectively monitoring 
and conservation of water resources. By ensuring high accuracy in land classification, the RF model supports 
sustainable practices by helping to maintain the ecological balance and optimizing land and water use in these 
sensitive areas [121]. 

Overall, the detailed evaluation and comparison of SVM and RF models based on the discussed metrics confirm the 
theoretical approach employed in the study and support the outcome of effective land use monitoring essential for 
sustaining water resources in geothermal fields. This precision in classification enhances environmental surveillance 
and urban planning and plays a pivotal role in maintaining the hydrological and thermal stability necessary for the 
continued viability of geothermal energy production [39]. 
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Table 11. Sensitivity and Specificity Results 

Algorithm Model Evaluation Land Use 2021 2022 2023 

SVM 

Sensitivity 

Agriculture and Plantation 0.85 0.89 0.89 

Built-up 0.83 0.96 0.91 

Forest 0.93 0.97 0.94 

Water bodies 0.93 0.93 0.96 

RF 

Agriculture and Plantation 0.87 0.91 0.96 

Built-up 0.83 0.96 0.89 

Forest 0.91 0.97 0.96 

Water bodies 0.93 0.95 0.97 

SVM 

Specificity 

Agriculture and Plantation 0.94 0.98 0.97 

Built-up 0.96 0.99 0.98 

Forest 0.96 0.95 0.96 

Water bodies 0.99 1.00 0.99 

RF 

Agriculture and Plantation 0.92 0.98 0.97 

Built-up 0.96 0.98 0.99 

Forest 0.98 0.97 0.99 

Water bodies 0.99 0.99 0.99 

3.7. Algorithm Evaluation 

Algorithm evaluation results, detailed in Table 12, reveal that the RF model, assessed using the e1071 package, 
consistently outperforms the SVM model evaluated by the Kernlab package across several performance metrics from 
2021 to 2023. In the latest assessment of 2023, the RF model achieved a peak accuracy of 0.97, surpassing the SVM's 
highest accuracy of 0.94. Similarly, the kappa value for RF reached 0.96 in 2023, indicating a more substantial 
classification agreement than SVM's maximum kappa of 0.95. These results highlight the RF model's better precision 
and dependability in categorizing land use, making it ideal for jobs that need high accuracy, such as the exact mapping 
of land cover types in geothermal regions. Accurate land classification is critical for implementing effective water 
conservation strategies, as it ensures that land use changes—key indicators of water demand and watershed 
management—are closely monitored. Using the RF model, geothermal energy stakeholders may improve their 
environmental management methods, ensuring that water resources are allocated optimally and ecological balance is 
maintained within geothermal zones. This high level of classification accuracy aids in preventing misallocation of 
resources and contributes to sustainable water management practices essential for the long-term viability of 
geothermal operations [81, 82]. 

Table 12. Algorithm Evaluation 

Algorithm Evaluation Algorithm Evaluation Parameter 2021 2022 2023 

SVM  

(Kernlab packages) 

Accuracy 

Minimum 0.89 0.88 0.89 

1st Quartile 0.90 0.91 0.91 

Median 0.92 0.92 0.92 

Mean 0.91 0.93 0.92 

3rd Quartile 0.92 0.94 0.93 

Maximum 0.94 0.96 0.93 

Kappa 

Minimum 0.85 0.84 0.85 

1st Quartile 0.87 0.89 0.88 

Median 0.89 0.90 0.89 

Mean 0.88 0.90 0.89 

3rd Quartile 0.90 0.92 0.90 

Maximum 0.92 0.95 0.91 

RF (e1071 packages) 

Accuracy 

Minimum 0.89 0.89 0.90 

1st Quartile 0.92 0.91 0.92 

Median 0.94 0.93 0.94 

Mean 0.93 0.93 0.93 

3rd Quartile 0.94 0.93 0.94 

Maximum 0.96 0.95 0.97 

Kappa 

Minimum 0.85 0.85 0.86 

1st Quartile 0.90 0.88 0.90 

Median 0.92 0.90 0.91 

Mean 0.91 0.90 0.91 

3rd Quartile 0.92 0.91 0.92 

Maximum 0.95 0.94 0.96 
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3.8. Discussion 

This study stands out for its meticulous execution in classifying land use types using distinct spectral indices—NDVI 

for vegetation density, NDBI for urban development, and NDWI for water presence, as outlined in Figure 5 and Table 3. 

High NDVI values (>0.7), indicative of dense forest vegetation, play a critical role in regulating hydrological cycles and 

surface water resources crucial for geothermal operations. Conversely, agricultural areas exhibit NDVI values ranging 

from 0.65 to 0.7, reflecting varied crop densities and stages, which are essential for precision agriculture practices that 

optimize water usage in geothermal fields [83, 84]. Urban areas identified with higher NDBI values (>0.2) highlight 

increased impervious surfaces contributing to runoff and reduced groundwater recharge, impacting water management in 

geothermal settings [88, 89]. Additionally, accurately detecting water bodies with NDWI values over 0.5 is crucial for 

maintaining water availability for geothermal plants [91, 92]. These spectral indices, which have been validated against 

previous research by Xue et al. (2021) and Muhaimin et al. (2020), not only improve the classifier's accuracy but also help 

sustainable management by giving specific, actionable data for environmental conservation and geothermal sustainability. 

This systematic approach ensures that land use monitoring through advanced remote sensing techniques directly supports 

the conservation efforts necessary for the sustainable operation of geothermal facilities [18, 85]. 

The performance of both SVM and RF models is intricately tied to parameter tuning, as evidenced by Table 4 and 

Table 5. In the case of SVM, maintaining a consistent Cost C value ensures stable regularization, while adjusting sigma 

values allows for sensitivity modifications in the kernel function to capture evolving data characteristics. Variations in 

support vector numbers over time indicate model development and increased generalization capabilities. In contrast, RF 

parameter optimization entails adjusting'mtry' values to respond to changing feature spaces and data distributions while 

keeping the number of trees constant for stability. Variations in out-of-bag error rates reflect year-to-year changes in model 

robustness. These parameter adjustments are crucial for optimizing land use classification accuracy and ensuring the 

models' predictive performance accurately reflects changing environmental conditions. Understanding and fine-tuning 

these characteristics allows practitioners to effectively employ SVM and RF models in various analytical scenarios, 

facilitating accurate land use monitoring and sustainable water management methods in geothermal areas [60–62]. 

The examination of feature importance outcomes for machine learning techniques reveals distinct patterns between 

SVM and RF models, as shown in Figure 6 and Figure 7. While SVM shows annual variability in band selections for 

different land use types, indicating a flexible approach to capturing relevant spectral characteristics, RF shows greater 

consistency, particularly for water bodies and built-up areas, implying a reliance on a stable set of significant predictors 

over time. This variation in feature selection patterns highlights the different tactics used by each algorithm. SVM's 

dynamic approach may show sensitivity to annual variations in land cover and climatic circumstances, which might affect 

its performance. In contrast, RF's preference for certain bands annually indicates a stable criterion for feature importance, 

contributing to its consistent performance. These findings are consistent with earlier studies, emphasizing the necessity of 

understanding algorithmic variances when evaluating land use categorization results. While SVM may offer flexibility in 

adapting to changing environmental variables, RF's dependence on robust predictors adds to its consistency across different 

datasets. Further research could explore ways to leverage the strengths of both algorithms for improved land use 

monitoring and water resource management in geothermal areas [93–98]. 

The comparison between SVM and RF methods in land use classification reveals nuanced trends and spatial variations, 

as outlined in Tables 6 and 7. Notably, agricultural and plantation areas show divergent trends between SVM and RF, with 

SVM demonstrating a decline followed by an increase. At the same time, RF indicates a general decrease followed by an 

increase. In contrast, both methods show consistent increases in built-up areas, albeit RF shows a more pronounced rise. 

Fluctuations in forestland are noted for both SVM and RF, with RF exhibiting a larger increase followed by a decline. In 

contrast, water bodies show rather constant patterns with minimal fluctuations in area for both techniques. These 

differences highlight the divergent methods of SVM and RF to evaluating land use changes over time. The disparities in 

results might be attributed to each model's unique algorithms and techniques. SVM's boundary-based classification may 

excel in less complex or well-separated data, while RF's ensemble method may handle overlapping classes and complex 

structures more effectively. Variations in sensitivity to outliers, capacity to handle non-linear connections, and quantity of 

features can all have an impact on performance. Furthermore, discrepancies in model-specific parameters and their 

calibration for the dataset might cause variances in classification results. Understanding these nuances is crucial for 

effective land use monitoring and water resource management in geothermal areas, where each land use type plays a 

distinct role in influencing hydrological cycles and groundwater recharge. Further research could explore the specific 

impacts of each land use type on water sustainability in geothermal fields, informing targeted conservation and 

management strategies [46, 110, 111]. 
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The comparison between SVM and RF models across various metrics underscores the RF model's consistent 

outperformance, with higher ACC, KC, and Sensitivity scores throughout the study period. This superiority is pivotal for 

accurately identifying land use changes that directly influence water sustainability in geothermal operations [38, 112, 113]. 

In detecting water bodies and maintaining high UC and Specificity for agricultural and forested lands, RF's robust 

performance ensures precise targeting and implementation of water conservation measures [11, 38]. These findings 

highlight RF's efficacy in managing complex environmental data, making it a preferred choice for geothermal field 

management where accurate land use classification supports effective water resource monitoring and conservation [40, 114, 

115]. Furthermore, the extensive evaluation of SVM and RF models verifies the theoretical approach used in the work, 

underlining the need of accurate land use monitoring for preserving water supplies in geothermal areas. The superior 

performance of RF in terms of ACC, KC, UC, Sensitivity, and Specificity further validates its efficacy in accurately 

classifying land use types, crucial for maintaining hydrological and thermal stability in geothermal energy production 

[116–118]. This comparative analysis contributes to advancing the understanding of machine learning algorithms' 

performance in land use classification and provides valuable insights for implementing sustainable water management 

strategies in geothermal areas [40, 119-121]. 

In comparing the performance of SVM and RF algorithms in monitoring land use, a clear trend of improvement in 

accuracy metrics over time emerges from various studies. Specifically, Rana et al.’s (2020) research reported ACC 

values of 0.64 for SVM and 0.7 for RF, whereas the current findings show a significant increase to 0.94 and 0.95, 

respectively [41]. Similarly, Pandit et al., 2024, highlight the robustness of RF with a top ACC of 0.9 and a Kappa 

Coefficient of 0.9, which the authors have found to increase to 0.95 and 0.93, respectively, in this study [122]. Zhao et 

al. (2024) also noted a range in User Accuracy from 0.6 to 0.9 for both algorithms, which the data further refines to 

0.84 to 0.99. These comparisons not only highlight the advancements in algorithmic precision, but also underline the 

superiority of RF in the context of land use monitoring, continuously obtaining greater accuracy across varied 

investigations [42]. 

The evaluation of algorithm performance, as depicted in Table 12, underscores the superiority of the RF model over the 

SVM model for land use classification tasks in geothermal fields. Utilizing the e1071 package for RF evaluation and the 

Kernlab package for SVM assessment, the RF model consistently outperforms SVM across multiple metrics from 2021 to 

2023. In 2023 specifically, RF achieved a peak accuracy of 0.97, surpassing SVM's highest accuracy of 0.94, while 

maintaining a higher kappa value throughout, reaching 0.96 compared to SVM's maximum of 0.95. These results 

emphasize the RF model's precision and reliability in accurately classifying land use types. It is particularly suitable for 

tasks demanding high accuracy, such as mapping land cover types in geothermal regions. Accurate land classification is 

essential for implementing effective water conservation strategies, as it enables the close monitoring of land use changes, 

which are crucial indicators of water demand and watershed management. Utilizing the RF model, geothermal energy 

stakeholders may improve their environmental management methods, optimize water resource allocation, and preserve 

ecological balance within geothermal zones. This high level of classification accuracy not only prevents misallocation of 

resources but also contributes to sustainable water management practices vital for the long-term sustainability of 

geothermal operations [81, 82]. 

The study concludes that the RF algorithm is the best alternative for land use categorization in geothermal zones, 

outperforming SVM in a variety of land use categories. Its capacity to handle difficult categorization tasks demonstrates its 

usefulness for precisely monitoring land use trends and their consequences for groundwater sustainability. Given the 

enormous influence of land use on groundwater management, particularly in recharge areas, enacting policies that 

prioritize their conservation is crucial. Protecting and expanding critical recharge areas, controlling urban growth, and 

encouraging water-efficient agricultural practices are essential measures indicated by RF classification results. Continued 

RF utilization for monitoring can help detect changes in land use patterns over time and enable the development of 

adaptive management strategies. Moreover, aligning groundwater conservation efforts with SDGs 6 and 15 underscores 

their contribution to broader environmental and societal objectives. In order to enhance outcomes, future studies could 

explore integrating additional remote sensing techniques or algorithms and assess the socioeconomic impacts of 

recommended land use policies. Such endeavors would help to increase the understanding and implementation of 

sustainable groundwater management strategies in geothermal areas. These efforts are essential for forecasting land use 

trends, predicting water balance calculations, and monitoring subsurface fluids by integrating surface and subsurface data 

over the next five years, thus contributing to the sustainable management of geothermal resources and environmental 

conservation [11, 38, 40, 109]. 
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4. Conclusions 

In this work, the authors evaluated the usefulness of SVM and RF algorithms for monitoring land usage in geothermal 

zones, which is critical for groundwater conservation and advancing SDGs 6 (Clean Water and Sanitation) and 15 (Life on 

Land). Key findings include: 

• The strategic selection of training data using spectral indices—such as high NDVI for forests, varied NDVI for 

agriculture, high NDBI for urban areas, and high NDWI for water bodies—is essential for the precise classification 

of land use, providing a robust foundation for distinguishing between different land cover types. 

• Optimal tuning of model parameters significantly enhances the performance of both SVM and RF models. SVM 

benefits from stable regularization and adaptive kernel sensitivity, while RF excels with a consistent ensemble size 

and dynamic feature selection, both pivotal for accurate land use classification. 

• The feature significance in land use classification shows distinct trends between SVM and RF. SVM adjusts annually 

to changes in spectral attributes. In contrast, RF shows a preference for specific bands, particularly in water bodies 

and built-up areas, highlighting RF's advantage in handling static feature sets. 

• Disparities in land use classification trends between SVM and RF were observed; SVM showed irregular patterns in 

agricultural areas. RF displayed more uniform trends and outperformed SVM in urban settings, suggesting RF's 

superior ability to manage complex data structures. 

• Overall, RF models surpass SVM in accuracy, stability, and precision in land use classification. The ensemble 

approach of RF, which amalgamates multiple decision trees, evidently enhances its capacity to interpret complex 

patterns, thus achieving higher accuracy in various land use categories. 

• Comprehensive analysis from 2021 to 2023 consistently demonstrated RF's superiority over SVM in terms of both 

accuracy and kappa coefficient. Consequently, for high-stakes classification tasks requiring precision and reliability, 

the RF model, particularly with the e1071 package, is recommended over the SVM model assessed with the Kernlab 

package. 

Finally, the RF algorithm’s outstanding performance in classifying land use inside geothermal regions 

demonstrates its vital role in encouraging sustainable groundwater management. The RF model contributes 

significantly to the SDGs for clean water and biodiversity by directing the implementation of land use policies that 

support groundwater replenishment as well as ensuring the sustainable management and conservation of groundwater 

resources. 

4.1. Limitations and Post-Study Research Plan 

While this research lays a solid foundation for managing geothermal land use through the integration of satellite 

imagery and machine learning techniques, it is important to acknowledge certain limitations and outline future steps. 

Despite its contributions, the study may need help in accurately forecasting land use trends and predicting water 

balance calculations over the next five years due to the dynamic nature of environmental factors. Furthermore, 

monitoring subsurface fluids by combining surface and subsurface data may be complicated and need additional 

methodological refinement. Moving forward, continued utilization of RF for monitoring can facilitate the detection of 

changes in land usage patterns and contribute to the development of adaptive management strategies. Aligning 

groundwater conservation efforts with SDGs 6 and 15 underscores their broader environmental and societal 

significance. In order to improve the outcomes, future studies should explore integrating additional remote sensing 

techniques or algorithms and assessing the socioeconomic impacts of recommended land use policies. These efforts 

are crucial for developing the understanding and implementation of sustainable groundwater management practices in 

geothermal regions, therefore contributing to the sustainable management of geothermal resources and environmental 

preservation. 
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