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Abstract 

Various research fields, such as biology and medicine, have increasingly used techniques for the machine estimation of 

generated pulses. For example, in biological medicine, classifying information makes it possible to automate the 

interpretation of incoming data obtained owing to diagnosis, which is necessary when processing large volumes of 

information arrays. This study aims to develop algorithms that enable the selection of single-type objects in images with 

subsequent image splitting into a set list of segments with heterogeneous tension, even when the number of reference 

images is very small. Analysis of existing algorithms allowed us to determine the focus area for developing and 

improving the efficiency of the algorithms. The existing algorithms show poor performance results in analyzing the dark 

parts of images, so it makes sense to develop an algorithm for image intensity normalization. The developed algorithm 

simplifies the procedure of partitioning the training base for the classifier owing to the use of the feature vectors. A 

random forest algorithm was used for image classification, followed by boundary refinement using a Markov field. The 

image-splitting algorithm precisely separates parts of the brain structure by applying a Markov field to refine 

classification results. The proposed classification algorithm showed strong results in comparison with existing 

algorithms, particularly in the comparison of the Dice criterion. The proposed method shows an average increase of 10% 

in classification accuracy. One way to improve the presented algorithm is to add texture elements to the feature vector, 

which allows the identification of distinguishing features of the elements, such as shape and length, which could improve 

this algorithm for a more accurate classification of substructures. 
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1. Introduction 

Scientific studies, including biological and medical experiments, are increasingly using machine pulse estimation 

techniques. Currently, methods are available to classify medical information, making it possible to identify objects in 

images. In medical biology, these methods automate the process of interpreting information resulting from diagnostics 

that are in great demand when processing large information arrays and visual estimation of the obtained data. The 

almost continuous increase in the volume of calculations and their automation are the main factors contributing to the 

development of more accurate calculation methods and accelerated information processing. 

The available equipment makes it possible to obtain high-quality images depicting almost any internal organ 

through a series of multidimensional images or a chain of characteristic segments in 2D planes. In processing the 

obtained images, difficulties sometimes arise in semantic segmentation, that is, separating objects corresponding to a 
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defined group. These difficulties can also complicate image segmentation into several anatomical components and 

reveal particular pathologies [1]. 

When segmenting an image describing a particular body fragment into several anatomical components, 

professionals often use atlases that contain images of standard body fragments with clear anatomical markings. 

However, in practice, it is essential to consider the specificity of the studied organism to transfer markings more 

accurately. 

Most available techniques for processing objects in medical images rely on machine-learning processes. Machine 

learning is a set of algorithmic techniques that allows computer systems to make data-driven predictions from large 

datasets. These techniques have various applications that can be tailored to the medical field. Significant efforts have 

been made to develop classical machine-learning algorithms for the segmentation of normal (e.g., white matter and 

gray matter) and abnormal brain tissues. However, the creation of imaging features that enable such segmentation 

requires careful engineering and expertise. Furthermore, traditional machine-learning algorithms do not generalize 

well. Despite significant efforts from the medical imaging research community, automated segmentation of brain 

structures and detection of abnormalities remain unsolved problems because of normal anatomical variations in brain 

morphology, image acquisition imperfections, and variations in the appearance of pathology [2]. 

During pathological identification, the main difficulties arise with imitation. Most atlases usually involve internal 

organs in a normal state. However, different pathologies have different parameters, complicating their identification by 

clarifying their shape, degree of activity, and current location. In addition, in some cases, it is impossible to obtain 

significant information arrays, or the process of obtaining such arrays is complicated [3]. Therefore, we propose an 

iterative biomedical image classification algorithm based on classification using a randomized solver forest by 

applying a Markov field to refine the resulting segmentation.  

2. Literature Review 

Today, many available practical techniques provide images of human organs, divided into invasive and non-

invasive techniques, with a certain degree of conditionality. The first category includes methods for obtaining images 

using histology. The second category covers techniques that do not involve direct invasion of the human body. This 

category covers ultrasound techniques, magnetic resonance imaging (MRI), and computed tomography (CT). 

MRI offers high-quality images that are clearer than CT; therefore, this technique is more often used to diagnose 

pathologies of the brain of the central nervous system. As a rule, MRI images preserve the data obtained during the 

study using a sequence of 2D images with some periodicity [4, 5]. 

A classic histological section is a lancet cut in a particular area, which is necessary to obtain an image. This 

technique uses dyes that outline the contours of the cells in question, their structures, and others. As a rule, these 

studies used several types of dye [6]. 

Image series transfer to information arrays. Conversion and storage of this information follow protocols that 

standardize the procedures of information exchange in the community of specialized professionals. After studying 

images, the professional can mark detected pathologies or areas that contain other important information [7]. 

Medical practice increasingly uses image-processing algorithms, which automate and reduce the time required for 

such procedures. Computer-aided diagnostics (CAD) also uses these algorithms. In addition, using these algorithms 

opens broad prospects for diagnostics and the application of more effective therapy [8, 9]. 

The first-generation techniques are simple but specific and cannot serve as the main ones. Their weaknesses include 

high sensitivity to noise components, uneven illumination, and different tensions of the studied objects. The considered 

techniques can only solve narrowly focused tasks, such as evaluating pathologies, contrasting with normal tissue, or 

pathologies outlined with sharp contours. However, this group of techniques applies in combination with other more 

advanced techniques [10, 11]. Second-generation techniques rely on mathematical calculations; however, they also 

have disadvantages. The methods based on the splitting of significant points of the considered object in the image 

operate mainly with the tension of these points, whose capacity does not always make it possible to reliably distribute 

the significant points and surrounding background [12]. 

The effectiveness of these techniques is largely determined by the established approximation that detects foci on 

strictly defined fragments. In addition, their effectiveness relies on processing a relatively small number of 

characteristics [13-15]. 
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Most available techniques do not consider the preliminary data of an image used as a  reference. When 

registering significant points based on their multidimensional displacements, comparing test images with reference 

ones (simply speaking, with images from atlases) must also be trained by 3-5 cases to identify the list of probable 

displacements. 

V-Net is a network modified from U-Net and was first proposed specifically for medical image analysis. Although 

it demonstrated good segmentation performance on prostate MR images, it did not perform well in our fetal MRI tissue 

segmentation, where it completely failed in segmentation tasks of the cerebellum, deep grey matter, and brainstem. A 

possible reason was that it did not make full use of the global context information of various tissue structures, so it was 

not strong enough for feature extraction. DMFNet, relative to V-Net, was able to segment the above three brain tissues 

better because the 3D-dilated convolution introduced in DMFNet can build multiscale feature representations and help 

extract smaller tissue patches, which were also used in our network. However, it has too many parameters and is too 

long to run for quick diagnosis. Moreover, a major feature of medical images is the small amount of available data. 

Therefore, if the network structure is too complex and there are too many parameters, the trained model may suffer 

from overfitting and bias [16]. 

For computational methods, extraction of the most relevant and important features is a key task, and if 

performed manually, it may lead to degraded performance, where feature engineering experts can easily miss the 

relevant features. Neural-network-based methods can extract useful features automatically, and the number of 

such features can range from dozens to billions, which is impossible in manual engineering. Artificial intelligence 

can be effectively used for the detection, segmentation, and classification of multiple diseases. Regarding the 

problems of this method, its reproducibility in clinical settings should be interpreted with caution. This study was 

based on a specific dataset and model, and it may not be possible to replicate the results obtained on a different 

dataset or using a different model. In addition, the availability of similar data and resources in clinical settings 

may be limited [17]. 

There are different ways to improve segmentation methods, one of which is EG-TransUNet, which is an adaptation 

of U-Net. Using the transformer can deepen the decoding process of high-level semantic features, and low-level 

texture features can be combined to gradually improve the edge part. In addition, the resolution of the decoded image 

was gradually improved, and the details of the image were gradually enriched, making the decoded image closer to the 

real result [18]. 

However, in our study, we focused on the application of the Markov field to improve the quality of segmentation. 

For example, there is a goal-driven unsupervised image segmentation method that, thanks to a novel definition of 

image segmentation taking into consideration a user-defined goal, is capable of partitioning the input image into a set 

of homogeneous regions of interest and a background area. By combining weighted graphs, parametric density 

modeling, and Markov random field modeling, the proposed method has been experimentally demonstrated to be 

effective in two different domains of applicability: medical magnetic resonance images and remote-sensing SAR 

imagery [19]. 

Deep learning is capable of learning high-level feature representations automatically and has emerged as a 

powerful mechanism in automated volumetric medical image segmentation. Moreover, engrafting statistical 

methodologies in deep networks improves biomedical image segmentation. Thus, volumetric 3D MRI 

segmentation at the intersection of statistical modeling and deep learning can be considered a more effective 

alternative to methods that are purely statistical or deep learning-based. Medical image segmentation encompasses 

a broad set of challenges, including complex and subtle surrounding boundaries of organs, lack of sufficient level 

of region uniformity and similarity, low contrast and intensity inhomogeneity, image noise, partial volume effect, 

and other artifacts that impede the precise identification of abrupt variations between organs of interest [20]. 

3. Objects and Methods of Research 

The main essence of the image-splitting technique is to create contour lines of tension, among which there is a 

group of contour lines of the studied objects. These contour lines are selected using multiclass codifiers to exclusively 

analyze closed contour lines. The control points of these codifiers are several shaping parameters of the object 

described by the contour line and the tension characteristics of the image fragment of the contour line location. 

Contour lines of tension dependence are drawn using a contouring technique. The contour lines representing the 

outlines of the considered objects were selected by a codifier operating with base gradients. Figure 1 presents a 

flowchart of the overall structure of the presented work. 
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Figure 1. Workflow flowchart 

To increase the reliability of the final result provided by this technique, it functions in semi-automatic mode. As a 

rule, a professional marks several rectangular fragments on the images of an object's location (Figure 2a). The objects 

were then machine marked in the outline of the marked fragments (Figure 2b). This method is similar to the “weak-tag 

technique. 

     
(a)                                                               (b) 

Figure 2. Image of object separation in semi-automatic mode: a) – selection of the interesting rectangular area of the image 

by a specialist; b) – machine marking inside the interesting rectangular area 

Contour line drawing techniques are typically applied to develop a contour line map represented by the dependence 

of the variation of the two main arguments. The contour line of the dependence f(x,у) represents the specific location of 

the arguments (x,y) when f(x,у) = const. The contour line h of the dependence f(x,у) represents the location of the 

arguments (x,y) when f(x,y) = h. When h belongs to the spectrum of values of dependence f(x,у), there can be a single 

or a limited number of contour lines concerning h. Drawing contour lines aims to create geographic (other specialized) 

maps used in geology, meteorology, etc. 

Creation of contour lines 

Defining a set of features, to construct 

feature vectors 

Processing of the images under test, by 

changing the intensity 

Processing of the images under test, by 

changing the intensity 

Partitioning an image using the mean shift 

algorithm 

Classification using a random forest 

algorithm, and subsequent refinement using a 

Markov random field 

Testing the proposed algorithm on data from 

Allen Brain Atlas 
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Many studies have described and proposed contour line-drawing techniques. We relied on the contour plot 

technique in MATLAB. Here, the dependence f(x,у) is expressed by the intensity of the point I(х, у), i.e., the map 

drawn for the image determines coordinate heights (x,y) by the tension of point (x,y) on the initial image, then using 

the technique for drawing contour lines for the position h or the set tension value [21]. 

The image resembled a multidimensional grid. The extreme points of this grid correspond to the tensions of the 

significant points, and the edges connect neighboring points (Figure 3). Examining all the grid quadrilaterals 

individually, the middle quadrilateral, the beginning of contour line h, is selected on the grid. Subsequently, extreme 

points 𝑎𝑖 and 𝑎𝑗, located on the edge are controlled by the expression; 

(𝑓(𝑎𝑖) − ℎ) ∗ (𝑓(𝑎𝑗) − ℎ) ≤ 0 (1) 

If the calculated value corresponds to the expression, the tension of the extreme points of the edge exceeds h, the 

tension of the opposite extreme points of the edge will be lower than the current h. It turns out that the considered 

contour line h belongs to the quadrilateral or its edge: 

𝑡 =
ℎ−𝑓(𝑎𝑖)

𝑓(𝑎𝑗)−𝑓(𝑎𝑖)
   (2) 

ℎ𝑥(𝑘) = 𝑎𝑖(𝑥) + 𝑡 ∗ (𝑎𝑗(𝑥) − 𝑎𝑖(𝑥))   (3) 

ℎ𝑦(𝑘) = 𝑎𝑖(𝑦) + 𝑡 ∗ (𝑎𝑗(𝑦) − 𝑎𝑖(𝑦))   (4) 

Here, 𝑎𝑖 represents the extreme point characterized by a lower tension value, k is the index of the current values of the 

contour line under consideration (considering k = 1). 

Next, the quadrilateral adjacent to the edge crossed by the contour line was considered, marking the previous 

quadrilateral as checked. The next quadrilateral is considered by exiting the edges using expression (1). Expressions 

(2-4) calculate the spatial location of key points for each edge intersected by the contour line to send the result to a 

particular cluster. Recording in a cluster occurs until the contour lines are 

 Cross the initial quadrilateral; 

 Enter the previously checked quadrilateral; 

 Leave the limits of the considered image fragment. 

Next, the current k sets to zero, selecting new contour lines h. Figure 3 shows the practical drawing of contour lines. 

Here, the quadrilaterals of white color with dark edges are analogous to the significant points. 

 

Figure 3. Appearance of contour lines drawing at h = 5 

The selected contour lines necessary to separate the objects in the images were closed. In the third variant, the 

contour line is not closed because it crosses the image area under consideration. Figure 4 shows the contour line 

drawing of the fragment marked by a professional. The figure shows a definite list of layers for which the closed 

contour lines are identical to the outlines of the objects under consideration. 

To separate the closed contour lines describing the outline of objects from other closed lines, a list of characteristics 

is necessary. As a rule, manual separation makes it possible to identify the required lines by simply separating the 

characteristics similar to those typically used by a professional when estimating the considered image fragment. 

In general, there are several characteristics, such as: 

 Length and width of the fragment under study;  

 Compactness of neighboring contour lines; 

 Distance between significant lines. 
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Figure 4. Appearance of contour lines of the considered image fragment 

The characteristics of the considered image fragment with the contour line depend on the tension; in particular, it is 

of interest:  

 The difference in tension along the outline of the closed contour line;  

 Ratio of the averaged tension of a closed contour line to that of a quadrilateral fragment. 

The basic gradient technique is often applied to machine learning, as detailed in [22]. Creating a multidimensional 

plane is an effective classification method [23]. 

Suppose we have a training selection with n components represented by gradient characteristics 𝑥𝑖 ∈ 𝑅
𝑟  

corresponding to group 𝑦𝑖 ∈ {−1,+1}: 

𝑋𝑛 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1,2, . . . , 𝑛}  (5) 

It is necessary to calculate the dependence 𝑓: 𝑅𝑟 → 𝑅, which fully describes the work of the sorter. 

𝐶(𝑥) = 𝑠𝑖𝑔𝑛(𝑓(𝑥))  (6) 

Considering the elementary case when 𝑦𝑖 = +1 and 𝑦𝑖 = −1are values from selection 𝑋𝑛, we have: 

{𝑥: 𝑓(𝑥) = 𝑤𝑥 + 𝑏 = 0}  (7) 

Here, w is the mass gradient; b is the current displacement. 

Then we can use w and b, so; 

𝑤𝑥𝑖 + 𝑏 ≥ +1, , when 𝑦𝑖 = +1  (8) 

𝑤𝑥𝑖 + 𝑏 ≤ −1, , when 𝑦𝑖 = −1 (9) 

The gradients of selection 𝑋𝑛 corresponding to expression (8) are part of the multidimensional plane 𝐻+1: 𝑤𝑥 +
(𝑏 − 1) = 0. Consequently, gradients 𝑋𝑛 corresponding to (9) are part of the multidimensional plane 𝐻−1: 𝑤𝑥 + (𝑏 +
1) = 0. The gradients that are part of multidimensional planes 𝐻−1 or 𝐻+1 are commonly called base gradients (Figure 

5). We can calculate the distance separating the neighboring multidimensional planes described by expression (7). 

 

Figure 5. Set of key points separated by a multidimensional plane 
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For base gradients, the expression 𝑤𝑥𝑖 + 𝑏 = ±1 is valid; therefore, the distance from any base gradient to a 

multidimensional plane is 
1

‖𝑤‖
. The distance separating the neighboring multidimensional planes 𝐻+1 and 𝐻−1 

corresponds to 
2

‖𝑤‖
. We calculated the indentation between the significant points divided by a multidimensional plane. 

Let us transform relations (8-9) into: 

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, . . . , 𝑛  (11) 

Therefore, we need: 

to reduce 
1

2
𝑤𝑤𝑇  (12) 

when 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 (13) 

For that: 

𝐹(𝑏, 𝑤, 𝛼) =
1

2
‖𝑤‖2 −∑ 𝛼𝑖{𝑦𝑖(𝑤𝑥𝑖 + 𝑏) − 1}

𝑛
𝑖=1   (14) 

𝛼 = (𝛼1, . . . , 𝛼𝑛) ≥ 0  (15) 

We should calculate the smallest values for currents b and w, while for min F, it is necessary to calculate the 

maximum values of 𝛼. 

Therefore, 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1   (16) 

𝑏 = 𝑦𝑖 − 𝑥𝑖𝑤 for any base gradients (17) 

Masses 𝛼𝑖 will not correspond to zero values of the base gradients; therefore, solely the base gradients will 

determine the spatial location of the multidimensional plane. Using the current w in dependence f(x) from expression 

(7), we have; 

𝑓(𝑥) = 𝑤𝑥 + 𝑏 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑥 + 𝑏
𝑛
𝑖=1   (18) 

Therefore, we obtain the class marking with respect to any gradient x when sign(f(x)). 

The generated technique describes the summary of gradient characteristics obtained in training selections where the 

considered dependence is divisible (Figure 6). This problem (12-13) can be solved by multiplying the pairs of 

gradients from the collection [24]. 

Therefore, let us replace expression 𝜙(𝑥) with kernel dependence K: 

 

Figure 6. Mapping the initial feature space to a multidimensional space, in which the training sample becomes 

linearly separable 
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Appearance of the initial characteristics superimposed by a linear law is as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)𝜙(𝑥𝑗)  (19) 

Let us use the kernel to build a new dependency: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏
𝑛
𝑖=1   (20) 

Applying activation function K using base dependence (RBF), we obtain 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 {−
‖𝑥−𝑦‖2

2𝜎2
}  (21) 

Only one characteristic 𝜎 describes the dependence. Therefore, we used the following base-gradient technique: 

𝐾(x,y) = ⟨⟨𝑥, 𝑦⟩ + 𝑐⟩
𝑑

   (22) 

Here, two characteristics – c and d describe this dependence. The base-gradient technique has several advantages. It 

selects the correct solution groups based on the optimal transformation of the convex dependencies. Thus, we eliminate 

the possibility that the sought gradients correspond to minima, in contrast to neural-network sorters and decision trees. 

In addition, the technique increases the indentation among neighboring classes, improving the sorter's ability to 

generalize, that is, it becomes possible to classify items that are not in the primary selection. The technique also 

exhibited a good performance. 

For training the sorter, it is necessary to generate training selections (5) covering all closed contour lines, including 

“objects” or “environment of objects,” characterizing these contour lines. Any contour line corresponds to the gradient 

𝑥𝑖. Meanwhile, the value 𝑦𝑖will is 1 when fixing the “object” and -1 for the “object environment.” 

Therefore, to build the sorter, the RBF base gradient technique was used (21). It showed better performance than 

Eq. (22). Thus, we do not rely on a single kernel but use their linear combination [25]. After completing sorter 

creation, we use dependency (20) to derive the grade marker for any new gradient characteristic x. 

To mark the outlines of the considered fragments, let us: 

 Build contour lines concerning the same spectrum of layers previously involved in training selection. 

 Select only closed contour lines from the created contour lines;  

 Calculate the gradient-characteristic for any closed line;  

 Use the previously created sorter for all gradients as characteristics;  

 Leave only several closed contour lines to which the sorter unambiguously points, perceiving them as an 

“object.” 

Therefore, in any significant quadrilateral fragment, it is possible to create final images with outlines of the studied 

objects using this technique. 

We describe the created technique of image splitting into a set list of segments. This can function in one training 

case. The image with the applied marking lines was the test image. The image used to train the technique is called a 

reference or training image. This technique operates based on the hypothesis that both images have an identical list of 

fragments, and their outlines may not change significantly, as shown in Figure 7. 

 

Figure 7. Appearance of the test image as well as taken from the atlas 
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The stochastic decision forest acts as a sorter. We used the mean shift technique to split the image into a particular 

list of significant points. Medical images have inherently unequal light exposure, which makes further ordered splitting 

difficult. Light exposure smoothing is one stage of the technique used to recreate uniform light exposure in the test 

image. A reference image is usually taken from atlases (where all images have the same light exposure). Figure 8 

shows the light-exposure smoothing process, where; 

a) The unprocessed test image; 

b) The image impression; 

c) The result of the Retinex technique; 

d) Correction of the image beyond the impression; 

f) The technique used for smoothing light exposure. 

Retinex is a well-known technique that effectively smooths light exposure. Here, the image Z(x,y) is expressed by 

the relation Z(x,y) = R(x,y)I(x,y) of the considered image R(x,у) and the discontinuous dependence of light exposure 

I(х,у). Since there are no refined data on the dependence describing light exposure I(х,у), let us estimate it by 

comparison with the considered image: I(х,у) = G(Z(x,y)) [26]. 

 

Figure 8. Appearance of the light exposure smoothing process: a) – unprocessed test image; b) – image cast; c)– result of the 

Retinex method; d) – correction of the image outside the cast; f) – applied method of smoothing the light exposure 

Obtaining a somewhat blurred image is the result of the convolution of kernel G(x,y): 

𝐺(𝑥, 𝑦; 𝜎) =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2   (23) 

Here, x is the distance from its midpoint on the horizon, y is the distance from its midpoint on the vertical axis, and 𝜎 

represents the error resulting from the splitting process proposed by Gauss. We applied the base values of this splitting 

to create a quadrilateral table describing the convolution. The center of the quadrilateral here will be х=у=0, while in 

other parts, we will get x=y. Let us calculate the components of the table using relation (23). In this case, each 

significant point of the image corresponds to a new tension value calculated by summing the tensions of the 

neighboring significant points: 

𝐼(𝑘, 𝑙) = ∑ 𝑓(𝑥 − 𝑘, 𝑦 − 𝑙)ℎ(𝑘, 𝑙)𝑘,𝑙   (24) 

Here, h(k,l) is the value of the indexed component (k,l) in the table. 

Therefore, let us calculate R(x,y) using R(x,y) = 
𝑍(𝑥,𝑦)

𝐺(𝑍(𝑥,𝑦))
. 

The use of the retinex technique for processing medical images can cause several difficulties (Figure 8c). Since the 

light exposure difference is not far from the outlines of the considered object on the image, the use of blurring does not 

make it possible to fully analyze the light exposure of significant points describing the object close to its outlines; 

therefore, we obtain light outlines of fragments close to the outlines of the objects themselves. In addition, Retinex can 

form a glow close to the sharper outlines in the inner part of the object in the image. 

To overcome the first difficulty, blurs G apply only to the inner part of the object outlined in the image (Figure 8b). 

The outline detection procedure uses the “EDISON” technique. The filtering process proceeds directly, because the 
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basic kernel proposed by Gauss is in the inner part of the outline. However, more efficient methods are required for 

this purpose. For example, it is possible to zoom in on an object outside the outline using circular reflections (Figure 

8d) of the object. In such a case, Е(х,у) can use accelerated filtering to process the quadrilateral fragment [27]. 

Thus, this technique of light-exposure smoothing uses an averaged filtering cascade M as a nonlinear kernel. 

Similarly, the Retinex technique applies several averaged filtering cascades with different scales, expressed as 

𝑀1𝑀2𝑀3. The final relation for smoothing the light exposure of the enlarged object in the image can be expressed as 

follows: 

𝑅(𝑥, 𝑦) =
𝐸(𝑥,𝑦)

𝑀(𝐸(𝑥,𝑦))+𝜀
  (25) 

𝑀(𝑥, 𝑦) =
1

3
∑ 𝑀𝑖(𝐸𝑖(𝑥, 𝑦))
3
𝑖=1   (26) 

Here, E – is the energy, and ɛ minimizes excessive amplification of the noise component in fragments where light 

exposure is insufficient. 

The final stage of the light-exposure smoothing technique balances the image bar diagram (the “auto-levels” 

procedure) shown in Figure 8e. 

In contrast to the analysis of multimodal information, in our case, we operate with only one image for each case; 

therefore, any significant point will have several characteristics: its location in the image (x, y) and its tension value. 

However, as a rule, this information is insufficient to determine whether this significant point corresponds to a 

particular fragment. The reason for this is that, within the considered fragments, there may be considerable tension 

differences among neighboring significant points, which are a list united by the presence of specific qualities that 

distinguish this list from neighboring significant points. Because at the moment of moving from one fragment to 

another, the base qualities of the outline itself change, and the outlines of the considered fragments in the image are 

likely to correspond to the outlines of the adjacent significant points [28]. 

The mean shift technique, which selects the maximum values obtained in a probability distribution without 

simulation, is interesting. Splitting the information list into sectors occurs such that groups of points tending to the 

maximum value in a given fragment correspond to a single sector [29]. 

Initially, the information will be averaged by the filtering cascade h: 

𝑓(𝑥) = ∑ 𝐾(𝑥 − 𝑥𝑖) = ∑ 𝑘 (
‖𝑥−𝑥𝑖‖

2

ℎ2
)𝑖𝑖   (27) 

Here, 𝑥𝑖 are the initial points and k(r) represents the kernel dependence. 

Subsequently, the selection of the maximum local values was performed. It starts with approximation 𝑦𝑘 , which 

may correspond to the initial significant pixel 𝑥𝑖, followed by the calculation of the dependency vector f(x) and its 

computation: 

𝛻𝑓 = ∑ (𝑥𝑖 − 𝑥)𝐺(𝑥 − 𝑥𝑖) = [∑ 𝐺(𝑥 − 𝑥𝑖)]𝑚(𝑥)𝑖𝑖   (28) 

Here, 𝐺 = −𝐾′, and m(x) is the mean shift gradient: 

𝑚(𝑥) =
∑ 𝑥𝑖𝐺(𝑥−𝑥𝑖)𝑖

∑ 𝐺(𝑥−𝑥𝑖)𝑖
− 𝑥𝑖  (29) 

Since the gradient is the difference between the mean significant pixels 𝑥𝑖 located near x and its current value, the 

local maximum value is selected through an iterative process. In the case where 𝑦𝑘  is the current approximation of the 

local maximum value, the value is substituted for 𝑦𝑘+1 during further iterations, considering the expression 

𝑦𝑘+1 = 𝑦𝑘 +𝑚(𝑦𝑘) =
∑ 𝑥𝑖𝐺(𝑦𝑘−𝑥𝑖)𝑖

∑ 𝐺(𝑦𝑘−𝑥𝑖)𝑖
  (30) 

The technique works until the set number of repetitions is reached, or until the displacement value (29) is below the 

set boundary value. In the process of ordered image splitting, the local maximum values are selected by considering 

the tension 𝑥𝑟  and their specific location 𝑥𝑠 = (𝑥, 𝑦). Therefore: 

𝐾(𝑥𝑖) = 𝑘 (
‖𝑥𝑟‖

2

ℎ𝑟
2 ) 𝑘 (

‖𝑥𝑠‖
2

ℎ𝑠
2 )  (31) 

The initial approximation of the local maximum value 𝑦𝑘  occurs for all the significant points of the image. The 

advantage of this technique is the absence of hypotheses concerning the characteristics and formats of sectors. In 

addition, the number of sectors is calculated automatically. 

Upon completion of the ordered splitting, a further list of characteristics proposed by the technique was computed 

for each significant point of the image fragment. Accordingly, one segment of the gradient characteristic representing a 
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significant point covers all its features [30]. The second segment of the gradient characteristic of each significant point 

expresses the initial spatial information regarding its location, that is, X=(x,y) for any considered fragment 𝑠𝑖𝑖 =
1, . . . , 𝑁 of the split image: 

𝐿 = [𝑃(𝑎(𝑋) = 𝑠1), 𝑃(𝑎(𝑋) = 𝑠2), . . . , 𝑃(𝑎(𝑋) = 𝑠𝑁)]  (32) 

Here, a(Х) is a relation describing the space of significant points in the image from fragment marking. 

The probability of matching a significant point 𝑠𝑖𝑖 = 1, . . . , 𝑁 to a fragment is calculated as follows: 

𝑃(𝑎(𝑋) = 𝑠𝑖) =

{
 
 

 
 
1, 𝑎(𝑌) = 𝑠𝑖 , ∀𝑌 ∈ 𝑈(𝑋)

0, ∃𝑌 ∈ 𝑈(𝑋): 𝑎(𝑌) = 𝑠𝑖
1

∑ 𝑠𝑗
, ∃𝑌1: 𝑎(𝑌1) = 𝑠𝑖 ∧ …∧ ∃𝑌𝑚: 𝑎(𝑌𝑚) = 𝑠𝑘

, 𝑌1, … , 𝑌𝑚 ∈ 𝑈(𝑋)

  (33) 

Since 𝑈(𝑋) = {𝑌: |𝑌 − 𝑋| ≤ 𝑅}, U(x) is a rounded fragment with a semidiameter R, and its center point 

corresponds to X. Y is the set of classified significant points. 

Equation (33) shows that if the significant point is in the considered fragment, the percentage probability that the 

significant point corresponds to the object will not depend on the value describing the degree of entering the significant 

point in the studied fragment. 

The classification of significant points concerning the considered image fragments relies on their gradient 

characteristics, using a technique responsible for learning based on sorters acting as a decision tree [31]. The tree is 

characterized by 𝜋: 𝑋 → 𝑏𝑜𝑜𝑙, where X is the set of characteristics of a given selection, the relationship is expressed as 

true or false, and each leaf corresponds to an answer Y. Tree creation uses main selections through a general recursive 

process that splits the initial characteristics into several components (Figure 9) [32]. 

 

Figure 9. Example of creating decision trees 

Several techniques for creating a decision tree are currently available, but the general principle of its creation 

remains unchanged. Suppose that the selection includes N cases, the characteristics are expressed by M, and the value 

m is set (as a rule, 𝑚 ≈ √𝑀) [33]. 

Each forest tree is created separately: 

 A new selection N is generated based on the training selection. Meanwhile, the components of primary selection 

can fall into a new selection by repeatedly recurring. 

 A tree responsible for classifying the characteristics of the new selections was created. The process of generating 

new tree nodes considers the characteristics of splitting not from the entire set of M characteristics, but only from t 

characteristics obtained chaotically. The selection of the optimal t characteristics can proceed according to the 

different techniques. For example, when using the code proposed by Breiman, the Gini coefficient is applied, which 

is also the basis for creating the CART. 

 A new tree will be created until the generated (described in point 1) selection depletes, resulting in branch cutting. 

The ISODATA method, which is currently employed to identify brain lesion foci in images, was utilized to analyze 

the proposed classification algorithm. The classification of objects proceeds as follows: the forest trees examine a new 

object that needs classification into a class, voting for the final class for object assignment. Stochastic decision forests 

are considered optimal techniques for classifying objects. Each technique offers final probability distributions at the 

output, which is of great importance, in many ways, refining the classification performance through random fields: 
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𝐶 = [𝑃(𝑎(𝑋) = 𝑠𝑖), 𝑃(𝑎(𝑋) = 𝑠2), . . . , 𝑃(𝑎(𝑋) = 𝑠𝑁)]  (34) 

𝑃(𝑎(𝑋) = 𝑠𝑖) =
𝑁𝑡𝑟𝑒𝑒𝑠:𝑎(𝑋)=𝑠𝑖

𝑁𝑡𝑟𝑒𝑒𝑠
, 𝑖 = 1, . . . , 𝑁  (35) 

Here, 𝑁𝑡𝑟𝑒𝑒𝑠 is the tuning parameter for machine learning. Upon completion of the classification, each significant point 

will have a gradient describing the probability of matching that significant point to the considered fragment. 

The classification of isolated significant points is sometimes associated with the formation of “empty” points, 
which are most often observed in the outlines of the considered fragments because the sorter does not consider the 
spatial location of the fragments. In general, the use of Markov fields allows for the significant minimization of this 
phenomenon. Therefore, selecting the optimal marking lines in the image reduces tension. The one-dimensional 

component, which expresses the degree of belonging of significant points to some class (the considered fragment), is 
described as follows: 

𝐸(𝑥, 𝑡) = − 𝑙𝑜𝑔10 𝐶  (36) 

where C is an arbitrary output of the set of trees from (34). 

To find the double component describing the identity of each marked class to neighboring significant points, a 

technique proposed by Potts is often used: 

𝐸𝑖,𝑗(𝑡𝑖 , 𝑡𝑗) = 1 − 𝛿(𝑡𝑖, 𝑡𝑗)  (37) 

𝛿(𝑡𝑖 , 𝑡𝑗) = {
1, 𝑡𝑖 = 𝑡𝑗 

0, 𝑡𝑖 ≠ 𝑡𝑗
  (38) 

The simulation is based on the hypothesis that neighboring significant points may also belong to the same class. 

Because the image is split into k fragments, the tension reduction process uses k-indexed hidden arguments 𝑡𝑗. 
When k>2, achieving this goal can be considered as NP-complex, and creating repetitive steps becomes optimal. This 

procedure used the 𝛼 -stretch technique. 

The technique is an iterative process in which: 

 An approximation is created, and classes are marked with significant points chaotically; 

 During each step 𝛼 ∈ 0, . . . , 𝐾 − 1, the percentage of the remaining marking lines tends to reduce the tension (a-

stretching). 

 When the tension reduces, a move to the previous stage or termination occurs. 

The tension resulting from a-stretching belongs to the gap: 

𝐸(𝑇 ∗) ≤ 𝐸(𝑇) ≤ 2𝑘𝐸(𝑇 ∗)  (39) 

Here, T* represents the optimal value of the hidden argument and k represents the contrast of the pairwise tensions. 

𝑘 =
𝑚𝑎𝑥 𝐸𝑖𝑗(𝛽,𝛾)

𝑚𝑖𝑛𝛽≠𝛾 𝐸𝑖𝑗(𝛽,𝛾)
  (40) 

The maximum reduction in tension affects the classes to which the significant points belong, which should be 
identical to the optimal groups corresponding to the output of the stochastic forest from the expression. In addition, the 
maximum tension reduction influences the belonging of neighboring significant points to identical fragments 

containing the considered object. Finding such an acceptable solution is optimal when analyzing this image. 

4. Results 

The proposed technique, which makes it possible to separate homogeneous fragments, identifies pathologies on 
MRI images. The testing process used 270×204 pixels images taken from the Allen Brain Atlas. The technique of 
splitting images into a set list of fragments was used for ordered fragmentation of a histological section of the mouse 
brain. Any MRI image series was alternately a trial, whereas the other series were reference images. The study 
describes the experiments performed in the creation of this technique in detail and a series averaged by many 

parameters. The developed algorithm was tested using ISODATA clustering. It was decided to use the four clusters as 
a criterion to stop the function if it stopped changing. A comparison with existing segmentation methods is presented 
in Table 1, and a comparison of ISODATA with the proposed technique is shown in Figure 10. The criteria used for 
evaluation were sensitivity, specificity, and the Dice similarity coefficient: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
   (41) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (42) 

𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (43) 
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Table 1. Comparison of biomedical image segmentation methods  

№ Method Sensitivity Selectivity Dice’s similarity measure Reference 

1 SparseMultiOCM 0.86 0.99 0.85 Naceur et al. [34] 

2 Iterative average 0.76 0.99 0.7 Ellwaa et al. [35] 

3 InputCascadeCNN 0.79 0.79 0.79 Havaei et al. [36] 

4 U-net 0.9 0.92 0.69 Biratu et al. [37] 

5 Region Growing 0.71 0.99 0.8 Biratu et al. [37] 

6 Proposed method 0.9 0.88 0.89  

 

Figure 10. Comparison of ISODATA with the proposed technique 

Testing the proposed algorithm showed strong results in identifying individual anatomical structures. The average 

value over all the structures was 0.86, which exceeded the average accuracy of the existing algorithms by 5-15%.  

5. Conclusion 

This paper describes new techniques for semantically ordered segmentation and classification of low-

dimensionality medical pulses in detail. These techniques rely on the learning process, and their use goes beyond the 

capabilities of all such techniques, the functioning of which depends on the significant information arrays required for 

training. The proposed technique saves professionals from the need to mark lines on these arrays. This opens up the 

possibility of identifying similar objects in images, thereby making it faster and significantly simpler to train the sorter. 

It is not necessary to identify all significant points belonging to the considered fragment in the image or all outlines of 

the objects but only to mark which contour lines describing the tension constitute the outline of these objects. The 

classification of contour lines in the technique for identifying similar objects in images offers the prospect of a reliable 

separation of objects within one stage. It differs favorably from similar techniques that classify significant points 

followed by dimensionality-based class grading. The applied characteristics, based on fragments located between 

contour lines, are very similar to those used by professionals during the visual estimation of objects in the image. The 

contour lines of the tension dependence can be integrated. Because of the estimation of all closed contour lines, only 

combined contour lines are typically studied for a single object, thus reducing the possibility of missing an object. In 

addition, this technique has the advantage of using only the most essential characteristics: the outline of the spectrum 

of tension and the number of layers required to create contour lines. Splitting images into a set list of fragments can 

successfully process uneven areas by applying the characteristics of the significant points. The initial processing of the 

image improves the quality of the test image. The algorithm was tested on brain images; however, it can be used in 

many biomedical image classification tasks. One potential improvement to the proposed algorithm would be to include 

additional texture elements in the feature vector, which could facilitate the identification of distinctive features, such as 

shape and length. This may enhance the ability of the algorithm by adding additional clarifying information that will 

increase the accuracy of the classification. 
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