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Abstract 

Noise interference in Magnetotelluric (MT) signals significantly undermines the accuracy of subsurface resistivity 

analysis, leading to potential errors in geophysical interpretation and challenges in resource exploration. To address this 

critical issue, this study develops denoising models based on Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) to enhance the quality of MT signals while preserving their original structure. The proposed 

models utilize MT data, incorporating electric field (E) and magnetic field (H) components, to effectively reduce noise. 

Evaluation results demonstrate that CNN outperforms LSTM, increasing the Signal-to-Noise Ratio (SNR) by up to 

58.8% (or 1.6 times) in the Hx channel. CNN also records lower Normalized Mean Square Error (NMSE) values across 

all channels, ranging from 0.006 to 0.033, while maintaining a high correlation coefficient of 0.999 in the Hz channel. 

Moreover, CNN is significantly faster, with processing times of 24.83 to 29.16 seconds—up to three times faster than 

LSTM, which requires 67.38 to 70.69 seconds. The superior performance of CNN in mitigating noise in MT data is 

attributed to its architecture, which focuses on local patterns. This makes it particularly effective for handling localized 

and sporadic noise, as observed in the Hx and Hy channels with recurring amplitude patterns. In contrast, LSTM is less 

effective for MT data with unstructured noise, such as in the Hz channel, due to its sequential approach, which is better 

suited for capturing long-term temporal relationships. This study aligns with the Sustainable Development Goals (SDGs), 

specifically SDG 9, which promotes innovative applications of deep learning technology, and SDG 7, which emphasizes 

improving the accuracy of renewable energy exploration. The findings provide a foundation for developing more 

adaptive and efficient denoising models, contributing to environmental sustainability and the advancement of clean 

energy exploration in the future. 
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1. Introduction 

The Magnetotelluric (MT) method represents a widely utilized approach for geothermal resource analysis through 

the subsurface identification based on electrical resistivity as a physical properties model [1, 2]. This method involves 
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the measurement of natural variances in electromagnetic wave phenomena, which are induced by solar activity, 

geomagnetic storms, and lightning [3]. The electromagnetic wave covers a wide-range of frequencies, from 0.0001 Hz 

to 10,000 Hz [4, 5]. MT method reliability depends on their natural signal sources, making it vulnerable to 

environmental noise interference [6]. Industrial development and urbanization have grown faster and contaminated 

MT signals with noise [7, 8]. Nowadays, MT surveys near mountainous areas also encountered challenges due to 

measurement points surrounded by the roads, residential areas, telecommunication cables, and power lines in a 

relatively short radius. Due to its spatial closeness with MT signal noise source, it will be difficult to achieve smooth 

resistivity curves, especially in the modeling of deeper resistivity structures. Without effective noise reduction, MT 

signals can be distorted, leading to the loss of important resistivity information [9, 10]. Therefore, denoising process is 

essential for enhancing MT data quality, minimizing distortions, ensuring data accuracy, and unbiased data 

interpretation [10, 11]. 

Several conventional methods have been developed to reduce noise in MT data (e.g., multivariate robust 

processing, cross power selection, singular value decomposition) [12–16]. These methods utilized remote reference 

and discrete wavelet transform that have been widely applied, but still have limitations in reducing specific 

electromagnetic noise (e.g., vehicle vibration, active electricity cable line) [15, 16]. A primary issue in these methods 

is the ineffectiveness in handling diverse noise characteristics and requiring manual intervention during its processing 

[17]. One of manual interventions in the conventional MT signal denoising involves manual adjustment to set the 

window function for different frequencies and parameters [18]. Another conventional approach based on the remote 

reference method, that is considered less effective depends on its high frequencies of reference data, where it is 

problem when noise is identified at low frequencies (lower than 1 Hz) [17, 19]. 

Usage of machine learning has emerged as a prominent approach in geophysical exploration in recent studies [20–

24]. Machine learning algorithms are promising complex pattern recognition in geophysical data and producing 

precise results rather than conventional methods [25–28]. Machine learning algorithms like Support Vector Machines 

(SVM) and Decision Trees (DT) have been used to predict the subsurface permeability model based on its porosity 

and dynamic viscosity [25, 28]. As part of machine learning, Deep Learning (DL) represents deep-seeking data 

correlation analysis and developing for more complex applications in geophysical modelling. Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM), both of which have proven highly effective in signal 

processing, are categorized as DL algorithms, whereas in MT signal denoising is preferred due to their adaptability to 

various noise types [26, 27].  

The significant advantage of utilizing CNN in signal processing is its ability to extract local features from data [29, 

30]. CNN algorithm utilizes convolutional layers that potentially detect local patterns in MT signals, which 

particularly contain important subsurface data in pattern recognition and signal classification [31–33]. Experimental 

results have shown the CNN algorithm was highly effective in identifying noise and reconstructing clean signals in 

MT data, achieving high Normalized Cross-Correlation (NCC), and low Normalized Root Mean Square (NRMS) 

error, which reflects its ability to preserve original features [34]. Furthermore, the modelling process using CNN 

algorithm is efficient, where requiring approximately 92 seconds only of training time for relatively large datasets 

[26]. On the other hand, LSTM also demonstrated strong performance in denoising time-series data with effectively 

removing noise while preserving essential features of the original data [31, 33]. Previous studies have shown LSTM’s 

effectiveness in meteorological time-series forecasting, such as predicting daily average temperatures with relatively 

low Root Mean Squared Error (RMSE) [35]. LSTM has also been used for denoising electrocardiogram (ECG) signals 

affected by severe noise, including random and drifting noise [36]. These multi-purpose application of CNN and 

LSTM algorithms in the denoising signal patterns shows its ability to address general and specific noise data cleaning, 

especially in MT signal denoising process.  

Most of the research in MT signal denoising utilizes one machine learning algorithm [26, 33, 36, 37]. There is 

limited research in the MT signal denoising that uses qualitative and quantitative comparison analysis to determine the 

better algorithm that used in the specific MT survey area [31, 33]. Several studies about MT signal denoising took 

place in the electromagnetic noisy area (e.g., city center, industrial area) [26, 27, 38]. There is still little research on 

MT signal denoising based on MT surveys in the mountainous area, whereas the residential area nowadays also 

spreading in those areas, which potentially affect MT signal measurement [9]. This research intentionally addresses 

those problems using MT signal measurement in the mountainous area, near residential and power cable lines, that 

potentially affect MT signal noise. Specifically, this research utilizes MT data collected from Kirishima volcano in 

Japan [39]. The dataset, identified as KHZ043, and has been applied in remote reference calibration as validated by 

Triahadini et al. (2023) [9]. This dataset provides a reliable reference for addressing electromagnetic noise challenges 

in mountainous environments, making it ideal for validating the proposed CNN and LSTM-based denoising 

approaches. 

This research using both CNN and LSTM algorithms that offer advanced methodologies for denoising MT signal 

data. CNN offers effective time processing and accuracy in extracting local features, making it highly effective at 

identifying noise and reconstructing clean signals [26, 32, 34, 40, 41]. LSTM offers deep analysis at capturing 

temporal patterns, which has been proven in handling noise within time-series data [31, 35, 36, 42, 43]. This research 
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compares different methods to find the best algorithm among CNN and LSTM in terms of its utilization in MT signal 

data cleaning. This research supports Sustainable Development Goals (SDGs) by improving the quality of geophysical 

data, which focuses on innovation by advanced technology (SDGs no. 9) and affordable clean energy through efficient 

renewable energy monitoring and evaluation (SDGs no. 7). This research results have the outcome to accelerate the 

eco-friendly technologies invention, promote effectiveness in energy-saving, and to preserve environment for future 

generations. 

The structure of this article is as follows: Section 2 outlines the research methodology, including details on the 

dataset and data preprocessing stages, such as noise identification, feature scaling, and synthetic noise generation for 

training data. It also covers model development using CNN and LSTM algorithms, as well as model evaluation. 

Section 3 presents the experiment results and discussion. Finally, Section 4 provides the conclusions, along with a 

concise summary of the key decisions made in the preceding sections. 

2. Research Methodology 

The objective of this study is to develop Magnetotelluric (MT) signal denoising models based on deep learning 

algorithms, CNN and LSTM, to automatically reduce noise while enhancing the quality of MT signals. The process 

begins with the collection of MT data, where noise-contaminated signals undergo preprocessing. This includes the 

identification of noise in real MT data and the construction of synthetic noise based on the identified criteria. 

Subsequently, the CNN and LSTM deep learning models are trained using prepared training data, focusing on their 

ability to recognize and denoise noise [18, 20, 22]. The models are then evaluated using performance metrics, 

including Signal-to-Noise Ratio (SNR), correlation coefficient, and Normalized Mean Square Error (NMSE), to assess 

their effectiveness in improving signal quality, as illustrated in Figure 1. 

 

Figure 1. Research Workflow 

2.1. The Dataset 

The MT data used in this research project consist of field data collected from the Kirishima volcano in Japan, as 

illustrated in Figure 2. The dataset, identified by the code KHZ043, originates from the original work of Dr. Koki Aizawa 

at the Institute of Seismology and Volcanology, Kyushu University, as specifically detailed in Aizawa et al. (2014) [39]. 

This dataset has also been used in several previous studies for remote reference calibration, including the study by 

Triahadini et al. (2023) [9]. 
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The dataset comprises 100,000 time-series MT data points, including five main signal components: two electric field 

components (Ex and Ey channels) and three magnetic field components (Hx, Hy, and Hz channels), as depicted in Figure 

2. The y-axis in the graph represents the signal amplitude for each component of the electric field (Ex and Ey) and the 

magnetic field (Hx, Hy, and Hz), where variations in values indicate the magnitude and direction of field changes over 

time. The dataset is divided into 80% training data and 20% testing data [41, 44]. 

 

Figure 2. Visualization of MT Data Showing Variations in Electric Fields (Ex, Ey) and Magnetic Fields (Hx, Hy, Hz) 

2.2. Preprocessing Data 

At this stage, several essential steps are carried out to prepare the raw MT data prior to model development. The 

process begins with noise identification and feature scaling, followed by the generation of synthetic noise for training data. 

This is then followed by model development and performance evaluation of the deep learning models [31, 45]. 

2.2.1. Noise Identification 

Noise identification in this study is based on the presence of amplitude spikes and unnatural signal patterns. A 

qualitative approach is employed by observing amplitude spikes and irregular signal patterns to determine the presence of 

noise in MT signals [4, 8, 18]. Noise in MT signals typically exhibits amplitude values that can reach up to ten times higher 

than normal signal amplitudes. Based on this, noise identification is also performed quantitatively by examining the 

amplitude magnitude. Figure 3 illustrates an example of noise segment identification in the electric field component (Ex 

channel) [18]. 

 

Figure 3. Identification of Noise Segments and Four Key Segments Characterized by Noise (Example from Ex Channel) 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
1

4
∑ 𝑀𝑖

4

𝑖=1

 (1) 

Table 1. Maximum Amplitude in Each Noise Segment (Example: Ex Component) 

Segment (𝑴𝒊) Maximum Amplitude 

1 -141.76 

2 -139.39 

3 -136.95 

4 -141.92 

The maximum amplitude for each segment identified as noise is then calculated, as shown in Table 1. The noise in the 

MT data used in this study was introduced synthetically. The noise was designed based on the prior identification of 

amplitude spikes and irregular signal patterns in the original MT data. This process was carried out to simulate 

disturbances or anomalies in MT signals. Synthetic noise is considered representative of real-world noise because it was 

designed to mimic the characteristics of actual noise, including high amplitudes that can reach up to ten times greater than 

normal signal levels [18]. Subsequently, the average value of the maximum amplitude is calculated using Equation 1. 

Noise identification is conducted for each component, specifically the two electric field components (Ex and Ey channels) 

and the three magnetic field components (Hx, Hy, and Hz channels). 

2.2.2. Feature Scaling 

Feature scaling is a crucial step to ensure that all features are on the same scale, allowing algorithms to learn more 

effectively and stably. One commonly used method is the min-max scaler, which transforms feature values into a specified 

range, typically between 0 and 1, without altering the relative distribution between values [25, 26]. Equation 2 is the 

formula used to normalize the average maximum amplitude values in this study [23]. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
1

4
∑ 𝑀𝑖−𝑦𝑚𝑖𝑛

4
𝑖=1

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
  (2) 

where 𝑀𝑖 represents the maximum amplitude value of each segment, 𝑦𝑚𝑖𝑛 is the minimum value of the dataset, and 

𝑦𝑚𝑎𝑥  is the maximum value of the dataset. The normalized values are then used as input for spike amplitude in the process 

of generating synthetic noise data [27]. 

2.2.3. Generating Synthetic Noise for Training Data 

The next step involves generating synthetic noise to enrich the variety of noise in the training data. This synthetic noise 

is constructed based on the identification results from the previous step, ensuring that the synthetic noise is proportional 

and realistic in accordance with actual MT data. The addition of synthetic noise is performed using the Python function 

"add_spike_noise", where several random indices in the data are selected to introduce "spikes" with amplitude values 

(spike_amplitude) derived from the earlier identification process. The number of spikes added is controlled by the 

parameter num_spikes, while the direction of the spikes (positive or negative) is randomly chosen using np.random.choice 

([-1, 1]), ensuring variation in each noise spike. This function also preserves the original data by creating a copy before 

modifying the selected indices. A visualization of the synthetic noise generation results for the Ex component can be seen 

in Figure 4 [28]. 

 

Figure 4. Process of Generating and Adding Synthetic Noise to the Ex-Channel 
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The visualization in Figure 4 provides an understanding of how synthetic noise is added, using the Ex channel as 

an example. The first graph in Figure 4 displays the original signal data, with some residual noise assumed to remain. 

This original data serves as a baseline for comparison with the results after the addition of the constructed synthetic 

noise. In the second graph, the successfully generated synthetic noise is marked by spikes in several segments of the 

signal. This noise is randomly added to simulate disturbances or anomalies in the MT signal. The third graph, an 

overlay of the original data and the synthetic noise, offers a direct comparison between the two. The blue line 

represents the original data, while the green line indicates the added noise. The steps applied to the Ex channel are also 

implemented for the other five channels (Ey, Hx, Hy, and Hz). The final stage of preprocessing involves data splitting, 

where the dataset is divided into training and testing data. These preprocessing steps ensure that the developed model 

is built using high-quality data, enabling it to handle diverse noise patterns effectively during training and testing [28]. 

This approach was applied to all MT data components (Ex, Ey, Hx, Hy, and Hz) to ensure realistic and diverse 

representations during model training. 

2.3. Model Development 

The deep learning approach used in this research offers a superior solution with outstanding capabilities in 

handling complex and diverse data patterns. The two main algorithms used are CNN, which excels at extracting local 

features from data, and LSTM, which is adept at understanding complicated temporal patterns and capturing long-term 

relationships in sequential data [29]. 

2.3.1. CNN Algorithm 

In the process of MT signal denoising, the development of an effective model is essential to handle the various 

types of noise that appear in the data. One method that is often used due to its superior ability to process signals is the 

Convolutional Neural Network (CNN). CNNs are well suited for this task as they can extract local features from 

signal data, recognize important patterns, and automatically identify and reduce noise with higher accuracy than 

conventional methods [15]. The CNN architecture itself is inspired by biological processes in the human visual cortex, 

where neurons respond to local stimuli, enabling efficient feature extraction [30, 31]. In this study, the process of 

denoising MT signals with CNN starts from the input layer, which receives MT time-series signal data that still 

contains noise. Convolutional layers then apply kernels to extract important features and ignore noise, resulting in 

feature maps that store relevant information from the signal. After that, the fully connected layers process all the 

features to separate the noise from the original signal. At the output layer, a noise-cleaned MT signal is produced and 

ready for further analysis. CNN utilizes convolution to effectively separate noise from the original signal. The CNN 

architecture can be seen in Figure 5 [32, 33]. 

 

Figure 5. CNN Architecture [46] 

The parameters of the CNN algorithm model used for the training process in this study are shown in Table 2, with 

default values applied. The structure and layers of the CNN model can be seen in Table 3. These parameters play a 

critical role in the training process to generate clean signal predictions for the denoising process. The Adam Optimizer 

parameter is used to iteratively update the network weights based on the training data. The batch size determines the 

number of samples processed before updating the model’s internal parameters. Batch size is a type of hyperparameter 

in deep learning algorithms, where smaller batch sizes provide more detailed information from the training data. 

However, excessively small batch sizes may lead to overfitting, where the model performs exceptionally well during 

training but struggles to predict accurately on testing data. The epoch specifies the number of times the deep learning 

algorithm processes the entire dataset, both forward and backward. The activation layer/function, such as ReLU, 

determines whether neurons should be activated based on the weights and inputs provided. This enhances the 

efficiency of the denoising process [34, 35]. 
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Table 2. Training Parameters of the CNN Model for the Denoising Process 

Parameters Description 

Batch size 64 

Epoch 100 

Activation layer ReLU 

Optimizer Adam 

Learning rate 0.001 

Table 3. Layer Structure and Function in CNN Model for Denoising 

No Layer/Block Parameters Purpose 

1 Bidirectional LSTM Layer 

- Units: 64 

Capturing temporal relationships in the data from both forward and backward directions 

to enhance model accuracy [47]. 
- Bidirectional: Yes 

- Return Sequences: True 

2 Dropout Layer - Rate: 0.2 Reducing the risk of overfitting by randomly dropping some units during training [48]. 

3 LSTM Layer 
- Units: 32 Capturing additional temporal relationships from previously processed sequential data to 

model more complex patterns [49]. - Return Sequences: True 

4 Dropout Layer - Rate: 0.1 Reducing the risk of overfitting in subsequent layers after the second LSTM layer [48]. 

5 Time Distributed Dense Layer 
- Units: 32 Applying a Dense Layer to each timestep independently to effectively combine features 

[50]. - Activation: ReLU 

6 Output Time Distributed Dense - Units: 1 
Generating final predictions for each timestep in the input sequence based on the learning 

outcomes of the entire network [50]. 

 

2.3.2. LSTM Algorithm 

LSTM identifies temporally distributed noise patterns through its specialized memory structure, which is designed 

to store and manage essential information over extended periods. The architecture of LSTM, as illustrated in Figure 6, 

includes key components such as memory cells and three primary gates: the input gate, the forget gate, and the output 

gate. These gates work together to selectively regulate which information should be retained, discarded, or used. The 

input gate controls the information entering the memory, the forget gate removes irrelevant information, and the 

output gate determines which information will be generated as output at each time step [40, 41]. This structure enables 

LSTM to effectively retain critical signals while eliminating irrelevant noise from sequential data [42]. In the 

application of MT signal denoising, LSTM is expected to perform effectively due to its ability to recognize patterns in 

time-ordered data. The model can identify essential patterns within sequential data while filtering out noise, producing 

a cleaner signal without compromising vital information. The recursive nature of LSTM allows the model to 

"remember" previous information while processing data, enabling it to account for temporal relationships within the 

dataset. The training parameters for the LSTM model used in the denoising process are detailed in Table 2, while the 

structure and layers of the LSTM model are presented in Table 3 [43]. 

 

Figure 6. LSTM Architecture [49] 
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In this study, another notable difference is the use of model regularization. LSTM employs a dropout layer, 

whereas CNN does not. This distinction reflects the architectural characteristics of each model, influencing how data 

is processed and the potential risk of overfitting. In LSTM, dropout is necessary due to its sequence-based nature and 

its ability to retain information in memory cells for extended periods. This increases the risk of the model memorizing 

patterns excessively, which can lead to overfitting [51]. To mitigate this issue, dropout is applied as a regularization 

technique by randomly deactivating a subset of neurons during training. This prevents the model from becoming 

overly reliant on specific neurons and enhances its ability to generalize across different data [33]. 

In contrast, CNN does not require a dropout layer, as its architecture is inherently more resistant to overfitting. 

Parameter sharing in CNN's convolutional layers significantly reduces the number of parameters that need to be 

learned, thereby preventing excessive model complexity [33]. Additionally, the use of pooling layers helps reduce 

feature dimensionality, further minimizing the risk of overfitting. With this mechanism, CNN can achieve good 

generalization without the need for additional regularization techniques such as dropout. The consistent use of 

hyperparameters, including the Adam optimizer, learning rate, and batch size, in this study (Tables 2 and 3) ensures a 

fair performance comparison between the two models, isolating the differences in results solely to their architectural 

characteristics [52]. 

2.4. Model Evaluation 

Once the CNN and LSTM models have been successfully developed for MT signal denoising, the next step is to 

evaluate the models to assess how effectively they remove noise from the signals. This evaluation is crucial to ensure 

that the models can accurately and consistently separate noise and remain reliable when applied to new data. Several 

evaluation metrics are used during the performance evaluation stage of this research, including signal-to-noise ratio 

(SNR), normalized mean square error (NMSE), and correlation coefficient. These metrics provide a comprehensive 

measure of the accuracy of the denoising results achieved by the deep learning models [53].  

SNR is a critical metric in signal measurement, including MT signals. A higher SNR value indicates that the signal 

has relatively low noise compared to a clean signal [53], if the SNR value is low, particularly below 15 dB, it suggests 

that the signal contains significant noise, making it susceptible to bias and misinterpretation [54]. The calculation of 

the SNR value can be performed using Equation 3. 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
∑ 𝑥𝑖

2𝑁
𝑖=1

∑ (𝑥𝑖−𝑦𝑖)2𝑁
𝑖=1

(𝑑𝐵)    (3) 

where 𝑥𝑖  represents the original signal value (clean signal), 𝑦𝑖  denotes the denoised signal value (predicted result), and 

(𝑁) is the total number of samples in the signal. After evaluating the model's performance using SNR to measure the 

comparison between the clean signal and noise, the model is further assessed using NMSE as an additional evaluation 

metric.NMSE provides a more specific measure of the model's ability to reconstruct a noise-contaminated signal. It 

evaluates the error between the true value and the value predicted by the model, considering the scale of the data used. 

Unlike other error metrics, NMSE normalizes the error based on the range of the original data (maximum and 

minimum values), offering a fairer evaluation when the data has varying scales [55]. The NMSE value can be 

calculated using Equation 4. 

NMSE =  
∑ (𝑦𝑖−𝑥𝑖)/𝑁𝑁

𝑖=1

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (4) 

where 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the maximum and minimum values of the original data. After evaluating the model 

performance using NMSE to determine the signal reconstruction error based on the data scale, the next step is to assess 

the relationship between the original and denoised signals using the correlation coefficient. NMSE provides an 

indication of how far the model's predictions deviate from the original signal, whereas the correlation coefficient 

evaluates how well the original signal pattern is preserved. The correlation coefficient is a statistical measure that 

describes the strength and direction of the relationship between two variables, ranging from -1 to 1. A value of 1 

indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation. The 

correlation coefficient can serve as an evaluation metric by illustrating how accurately the model predicts the actual 

condition. A higher correlation coefficient signifies a better fit, meaning the prediction model is more accurate. The 

correlation coefficient value can be calculated using Equation 5 [47]. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∑ (𝑥𝑖−𝑦̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

𝑁
𝑖=1

  (5) 

where 𝑥̅ represents the average original signal, 𝑦̅  denotes the average predicted signal (after denoising). By using these 

three metrics, a clearer understanding of the model's effectiveness in removing noise without altering the original 

structure of the signal can be obtained [37]. 
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3. Results and Discussion 

CNN and LSTM algorithms have been used in the same MT signal source, including all electrical and magnetic 

channels. If, in CNN algorithm application the MT signal is denoised based on the convolutional pattern in the signal 

processing, in the LSTM the denoising process is fundamentally based on capturing temporal dependencies and 

patterns from sequential data. So, these two algorithms are learning the pattern of the signal to recognize the MT noise 

signal and preserving representative signal data when it is appropriate with clean MT signal characteristics.  

MT signal denoising from CNN and LSTM are resulting denoised MT signal models from each MT channels and 

performance metrics, such as Signal-to-Noise Ratio (SNR); Normalized Mean Square Error (NMSE); and correlation 

coefficient. The denoised MT signal models show the product of machine learning algorithms that have been used to 

reduce electromagnetic noise. Performance metrics are needed to assess the effectiveness of both models in reducing 

noise while preserving the original structure of the signal. This research analyses the denoising effect on MT signal 

model from each machine learning algorithm, also assessing the efficiency of the two models based on training time 

comparison [56, 57]. 

3.1. CNN Model Denoising Result 

CNN algorithm for MT signal denoising works well and properly, resulting new predicted signal model as 

denoised MT signal model for each channel. From electrical field in x-axis (Ex) that shown in Figure 7; electrical field 

in y-axis (Ey) that illustrates in Figure 8; magnetic field in x-axis (Hx) that depicted in Figure 9; magnetic field in y-

axis (Hy) that shown in Figure 10; and magnetic field in z-axis (Hz) that illustrated in Figure 11 indicates the similar 

trend in their signal denoising process. The visualization from each model shows the signal spikes are indicated as 

noise signal has been diminished by predicting the "normalized" signal trend based on other signal patterns with 

minimum spikes [26]. 

CNN model application for MT signal denoising works effectively in removing noise on each channel. The noise 

signal in the original signal is significantly reduced in the denoised signal model. There is reduction of the sharp 

fluctuations and irregularities signal that be expected as noise signal. In addition, after the denoising result is overlaid 

with the original data, the main structure of the original signal is preserved after the denoising process. From this 

analysis, the denoising process using CNN Algorithm does not change the actual signal information. In detail, MT 

signal denoising identification by zooming in the signal model, the CNN model is preserving the shape of original 

signal and effectively removing noise signal indication [27]. 

 

Figure 7. Electric Field Component in X-Axis (Ex) Signal Denoising from CNN Algorithm Application 
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Figure 8. Electric Field Component in Y-Axis (Ey) Signal Denoising from CNN Algorithm Application 

 

Figure 9. Magnetic Field Component in X-Axis (Hx) Signal Denoising from CNN Algorithm Application 
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Figure 10. Magnetic Field Component in Y-Axis (Hy) Signal Denoising from CNN Algorithm Application 

 

Figure 11. Magnetic Field Component in Z-Axis (Hz) Signal Denoising from CNN Algorithm Application 
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Figure 12. Training and Validation Loss Curve from CNN Algorithm Denoising 

CNN model shows optimal performance without any indication of overfitting or underfitting. This indication is 

known based on loss-epochs diagram for each channel (Ex, Ey, Hx, Hy, Hz), as shows in Figure 12. Training and 

validation loss significantly decreased in the early epochs, giving an indication if the model learned the data 

patterns well. After a few epochs, the loss curves became more stable and converged to very low numbers, 

indicating the model successfully minimized the prediction error. The relationship between the training and 

validation loss illustrates an insignificant difference between the two curves. The denoised MT signal model did 

not have any overfitting and underfitting result. It is meaning the model is specifically suitable for training data, 

did not had any over-generalization in signal denoising process, and able to preserve important patterns from the 

signal data [58]. 

Based on Signal-to-Noise Ratio (SNR) analysis, the CNN model is giving significant improvement to the quality of 

the MT signal and effectively reduced the noise signal. MT signal denoising using CNN algorithm shows an increase 

in SNR for all channels. In general, the initial SNR has a range of 23.89 to 28.60 dB and increases to 30.74 to 46.76 

dB, as shown in Table 4. Figure 13 illustrates that the distribution of SNR value for each channel has a relatively 

consistent trend of increasing. The most significant SNR value increase has happened to Ex channel, where the SNR 

increased from 24.58 dB to 43.71 dB, it increased 1.78 times rather than initial SNR. This is followed by Hy channel 

as second highest SNR value improvement, this channel increasing 1.63 times from 28.60 dB to 46.76 dB. The least 

increase happened in Hz channel, where it is increased from 24.42 to 30.74 dB, or 1.26 times higher than its initial 

value [57].  

This CNN algorithm for MT signal denoising is resulting in line analysis with the previous research that shows an 

increase in SNR using machine learning algorithm, that related to effectiveness in its pattern recognition to predict the 

"normal" signal trend based on surround signal with less spike trend. High SNR indicates low noise in the signal and 

successful of denoising performance. Thus, the CNN model that has been built in this research is able to remove noise 

efficiently, resulting in a cleaner and more reliable MT signal [57, 59].  

Table 4. Comparison of Initial and CNN-Denoised SNR Across Channels 

Channel 
SNR (dB) 

Initial CNN 

Ex 24.58 43.71 

Ey 23.89 36.50 

Hx 26.71 42.42 

Hy 28.60 46.76 

Hz 24.42 30.74 
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Figure 13. Comparison of SNR between Initial and CNN-Denoised MT Signal 

Model performance evaluation from CNN algorithm application in MT signal denoising is carried out using 

correlation coefficient and NMSE analysis. This evaluation is needed to analyse the effectiveness of denoising using 

the CNN model. The correlation coefficient and NMSE values are used to assess and illustrate the ability of the 

denoised MT signal model to maintain the original structure of the signal, simultaneously minimizing the calcuated 

error after the denoising process. The evaluation results based on these metrics that are presented in Table 5 and 

Figure 14 [59]. 

Table 5. Evaluation Metrics of CNN Denoising Result for each Channel 

Channel 
CNN Model Result Evaluation Metrics 

Correlation coefficient NMSE 

Ex 0.955 0.006 

Ey 0.970 0.014 

Hx 0.997 0.007 

Hy 0.993 0.006 

Hz 0.999 0.033 

 

Figure 14. Evaluation of CNN Denoising Performance using Correlation Coefficient and NMSE Across Channels 

Denoising model evaluation from CNN algorithm based on the correlation coefficient and NMSE values 

shows excellent performance, where all channels have a relatively high correlation to the original data. For 

correlation coefficient, Hz and Hx channels record the highest values of 0.999 and 0.997, respectively. It 

highlights the CNN algorithm ability to maintain the original signal structure, resulting a good representative 

signal model. With the range of 0.955 to 0.999, the correlation coefficient indicated whether the denoised signal 
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was similar to the original signal. A high correlation coefficient value ensures important information in the MT 

signal is preserved during the denoising process, while noise is successfully reducing the noise without corrupting 

the original signal pattern [27]. 

For NMSE evaluation, low NMSE value is related to good representative signal models. The NMSE concept in this 

evaluation is fundamentally opposite with correlation coefficient. While the correlation coefficient finds the similarity 

between denoised signal model and the representative of zero-noise signal model, NMSE finds the difference between 

them. So, NMSE in this research is designed to calculate the error between original and predicted signals, which is 

identified had relatively low error after the normalization process. The NMSE from CNN algorithm's signal denoising 

in this research resulted in the value ranges from 0.006 to 0.033, with the Ex and Hy channels having the lowest 

NMSE of 0.006, reflecting the minimal error after the denoising process. However, the Hz channel, which had the 

highest correlation coefficient value, is recorded with the highest NMSE of 0.033. Even though, the Hz channel's 

NMSE is still within the range indicating a relatively low value of error. Based on these evaluation metrics, it is shown 

that the denoising architecture from CNN algorithm in this research is appropriate and reliable to be used in MT signal 

processing applications [33]. 

3.2. LSTM Model Denoising Result 

Visual analysis of the LSTM algorithm modelling was successfully reduce the electromagnetic noise for all 

channels and preserved the important characteristics of the original signal. There is similarity between denoising 

results with assumed clean MT signal from the original signal, especially in segments with repetitive patterns and 

uniformed high amplitude. This result indicates that the LSTM algorithm is reliable in improving the quality of MT 

signals by reducing the noise signal influence on the original MT signal trend [57]. 

The denoised signal model of electrical field components in x-axis (Ex) and y-axis (Ey) are shown in Figures 

15 and 16, respectively. For magnetic field components, the denoised signal model in x-axis (Hx), y-axis (Hy), 

and z-axis (Hz) are depicted in Figures 17 to 19, respectively. The LSTM denoising results that shown in Figures 

15 to 19 sequentially illustrate the original signal diagram, denoised signal diagram using LSTM, overlay of the 

original signal and the denoising result, and enlarged zoom in of a selected overlay segment to provide more 

detailed insights into the signal matching between the original signal and the denoising result [44]. 

 

Figure 15. Electric Field Component in X-Axis (Ex) Signal Denoising from LSTM Algorithm Application 
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Figure 16. Electric Field Component in Y-Axis (Ey) Signal Denoising from LSTM Algorithm Application 

 

Figure 17. Magnetic Field Component in X-Axis (Hx) Signal Denoising from LSTM Algorithm Application 
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Figure 18. Magnetic Field Component in Y-Axis (Hy) Signal Denoising from LSTM Algorithm Application 

 

Figure 19. Magnetic Field Component in Z-Axis (Hz) Signal Denoising from LSTM Algorithm Application 
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Figure 20. Training and Validation Loss Curve from LSTM Algorithm Denoising 

A significant decrease in loss values in the first few epochs is indicating the LSTM algorithm learn the signal data 

patterns very quickly in this epoch. After reaching low values, both training and validation loss remain stable until the 

end of the training process. When the training process is running, there are no signs of overfitting or underfitting 

happened on the loss function analysis. It indicates the analysis not only understands the training data, but also able to 

perform well on the validation data. There is a consistent trend for all channels that contained a fluctuation at the 

beginning of training, specifically in the transition of first phase of signal pattern learning and the end of learning. 

These results show that the model has good generalization ability, where it is very effective in reducing noise and 

preserves the important structure of the MT signal. Figure 20 illustrates the training and validation loss curve for the 

LSTM algorithm in MT signal denoising [35]. 

Denoising results of the LSTM model show significant capability in increasing SNR values for all MT signal 

channels. Overall, the SNR value has increased from the range of 23.89 to 28.60 dB in the original signal into the 

range of 30.05 to 41.80 dB after the signal denoising process finished. Ex channel shows the highest SNR increased by 

70.1% (1.70 times) from 24.58 dB in the original signal to 41.80 dB after denoising using LSTM, while Ey channel 

had increased by 44.6%; the Hx channel had increased by 36.9%; Hy channel had increased of 26.5%; and Hz channel 

had increased of 23%. This improvement shows significant noise reduction in all channels, with a consistent increase 

trend for all channels' SNR. It indicates that the LSTM effectively reduces noise while maintaining the important 

characteristics of the original signal. Initial and Denoised SNR from LSTM algorithm modelling was written in Table 

6, and its distribution is illustrated in Figure 21 [27]. 

Table 6. Comparison of Initial and LSTM-Denoised SNR Across Channels 

Channel 
SNR (dB) 

Initial LSTM 

Ex 24.58 41.80 

Ey 23.89 34.54 

Hx 26.71 36.58 

Hy 28.60 36.18 

Hz 24.42 30.05 

Performance evaluation of MT signal denoising by LSTM algorithm is using correlation coefficient and NMSE 

metrics. These two-evaluation metrics provide deeper analysis related to model's ability to preserve the original signal 

structure and error rate in the denoising process. These evaluation results are important to understand significance of 

LSTM algorithm in maintaining data integrity and its effectiveness in reducing electromagnetic signal noise. LSTM 

model performance for MT signal denoising shows good results, where the correlation coefficient reaches the highest 

value in the Hz channel (0.999) and the lowest value in the Ex-channel (0.928). It is indicating the ability of LSTM 

algorithm to maintain the original structure of the signal is reliable and well-performed, especially in the Hz channel. 
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The sequential approach of LSTM algorithm can be enhanced with some improvement in bidirectional layers to 

advance unstructured noise, but it will be affecting the longer computation time in process, where it needs the further 

research to know well about that option [60].   

 

Figure 21. Comparison of SNR between Initial and LSTM-Denoised MT Signal 

In LSTM algorithm for MT signal denoising, there are NMSE values range from 0.006 to 0.033. Ex had the lowest 

NMSE value of 0.008, representing the minimal error in the denoising process. Hz channel is noted to have the highest 

correlation coefficient value of 0.036, while it still has a relatively low error value. These evaluation metrics illustrate 

that the denoising architecture from LSTM algorithm in this research is appropriate and reliable to be used in MT 

signal processing applications. Table 7 written LSTM algorithm evaluation metrics, while Figure 22 illustrates the 

evaluation metrics distribution in diagram [57].  

Table 7. Evaluation Metrics for LSTM Denoising Results on Each Channel 

Channel 
LSTM model result evaluation metrics 

Correlation coefficient NMSE 

Ex 0.928 0.008 

Ey 0.963 0.019 

Hx 0.994 0.015 

Hy 0.984 0.016 

Hz 0.999 0.036 

 

Figure 22. Evaluation of LSTM Denoising Performance using Correlation Coefficient and NMSE Across Channels 
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3.3. Discussion 

After the analysis of each machine learning algorithm, this section will discuss about the results comparison, both 

in its qualitative and quantitative analysis. The qualitative comparison analysis discusses about the visualization 

models and the shape of MT signal. Although the denoised MT signal product from CNN and LSTM algorithms had 

similar forms, but there are several detailed signal's spike that contributes to performance evaluation metrics 

quantitative. The quantitative comparison analysis will be focused on discussing about the performance evaluation 

metrics and its distribution value diagrams [44].     

In-depth performance analysis of the MT signal denoising model will be focused on two main evaluation aspects: 

effectiveness and efficiency. Effectiveness is assessed using the performance metrics of SNR, correlation coefficient, 

and NMSE. Effectiveness describes the model's ability to remove noise while preserving the original signal structure. 

Efficiency will focus on the computational time required by the model to complete the denoising process. 

Combination of effectiveness and efficiency analysis represents more comprehensive understanding of each denoising 

algorithm’s reliability in MT signal processing applications [17].  

Signal-to-Noise Ratio (SNR) in this research plays an important role in representing MT signal quality level, both 

original signal and denoised signal. CNN and LSTM algorithm successfully applied and gave significant result in MT 

signal denoising. Based on its SNR values enhancement in all MT channel, all denoised MT signal resulting higher 

SNR than the original one. It indicates both algorithms promise signal enhancement due to its pattern analysis ability 

in predicting signal noise indication and preserving the real signal data [57]. 

CNN and LSTM algorithms consistently increase the SNR across various channels compared to the original 

data. For the CNN algorithm, the improvement of SNR value ranges from 6.32 dB to 18.16 dB, where the 

denoised MT signal produced SNR value in the range of 1.3 to 1.6 times higher than the original one. This range 

highlights CNN's effectiveness in denoising MT signals, with the best performance observed in the Hy channel, 

which recorded the highest SNR value increase of 18.16 dB; from 28.60 dB (initial signal) to 46.76 dB (after 

CNN denoising) representing an increase of 1.6 times higher. LSTM algorithm for MT signal denoising also 

illustrates the SNR value enhancement, while it is resulting in slightly inferior improvement rather than CNN's 

result. The SNR enhancement in the LSTM algorithm application varies from 5.63 dB to 9.83 dB, where it is 

equivalent to a 1.2 to 1.4 times increment. The SNR value comparison has been written in Table 8, and its value 

distribution is depicted in Figure 23 [27]. 

SNR values distribution that compares original value, denoised CNN value, and denoised LSTM value show the 

superiority of CNN algorithm to enhance SNR value in MT signal denoising, rather than LSTM algorithm application. 

In SNR values distribution in Figure 23, it is illustrating all electrical and magnetic channel of MT signal data is 

dominated by CNN algorithm results. It can be interpreted if the convolutional layer pattern analysis in CNN 

algorithm works better than temporal dependencies from sequential patterns analysis in LSTM in denoising MT signal 

[27].  

In deeper analysis, CNN algorithm is resulting better MT signal quality enhancement rather than LSTM algorithm 

in the magnetic field channels, while in the electrical field channels, those algorithms show an identical trend. It is an 

indication if the magnetic field signal in the MT survey is more appropriate in using the CNN algorithm as a denoising 

signal filter rather than the LSTM algorithm. However, in the electrical field signal, both of algorithms have similar 

improvements, but CNN is promising a slightly better denoised signal [26]. 

Both CNN and LSTM algorithms show their best performance on the Ex-channel, with significantly higher SNR 

values compared to other channels after the denoising process. This indicates that both methods are highly effective in 

removing signal noise and reconstructing the denoised signal at this channel. Based on information in Table 8 and 

Figure 23, the CNN algorithm is increasing the SNR value from 24.58 dB to 43.17 dB. It is equivalent to 75.63% or 

1.76 times higher than the original one. Besides, LSTM improves the SNR value from 24.58 dB to 41.80 dB, where it 

represents improvement of 70.05% or 1.70 times higher than the original one [34].  

The most significant difference SNR improvement happened in Hy channel. The CNN algorithm's result is 

gaining the SNR value from 28.60 dB to 46.76 dB, where it is increased by 63.49% or 1.63 times higher. It is 

making huge difference with SNR value enhancement from LSTM algorithm application, where only increased 

from 28.60 dB to 36.18 dB. It is just improved 26.50% or 1.26 times higher than SNR value from the original 

signal [17]. 
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Figure 23. Comparison of SNR Across Initial, CNN, and LSTM Methods 

Table 8. SNR Comparison: Initial, CNN, and LSTM Denoised Signals 

Channel 
SNR (dB) 

Initial CNN LSTM 

Ex 24.58 43.71 41.80 

Ey 23.89 36.50 34.54 

Hx 26.71 42.42 36.58 

Hy 28.60 46.76 36.18 

Hz 24.42 30.74 30.05 

For the qualitative analysis based on the signal model, the Hx channel consistently shows significant denoising 
performance, which can be attributed to the structured signal patterns. These patterns predominantly consist of clear 

and stable recurring amplitudes, as illustrated in Figure 24. Moreover, the noise on the Hx channel tends to be 
localized, sporadic, irregular, and characterized by infrequent fluctuations. These characteristics made the noise easier 
to identify and simplify in the denoising process [36].  

Otherwise, the Hz channel became the most challenging MT channel to denoise using both methods. CNN 
increases the SNR value from 24.42 dB to 30.74 dB, while LSTM improves the SNR value from 24.42 dB to 30.05 

dB. The challenge in denoising the Hz channel is caused by more evenly distributed noise with constant and smooth 
amplitude compared to other channels. The noise signal amplitude does not illustrate significant fluctuations and 
remains relatively smooth, as illustrated in Figure 25 [19]. 

 

Figure 24. Visualization of MT Signal in Hx Channel 
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Figure 25. Visualization of MT Signal in Hz Channel 

Correlation coefficient and Normalized Mean Square Error (NMSE) are utilized to provide comprehensive 

performance metrics assessment of the denoising algorithms in this research. While SNR represents the algorithm's 

ability to enhance signal quality by reducing noise, it does not fully reflect the accuracy level or the errors incurred 

during the denoising process. Therefore, the correlation coefficient measures how denoised MT signal results preserve 

the linearity of the original signal patterns, whereas the NMSE is used to evaluate the magnitude of errors relative to 

the denoised MT signal to the original signal. The combination of these metrics offers a more holistic analysis related 

to the effectiveness of the denoising process [17].  

CNN algorithm consistently overcomes LSTM algorithm in providing better MT signal denoising in this research. 

Based on the correlation coefficient and NMSE values that are written in Table 9 and illustrate its value distribution 

diagram in Figure 26, CNN algorithm consistently shows superior performance compared to the LSTM algorithm, 

with a higher correlation coefficient and lower NMSE values. In the correlation coefficient analysis, CNN algorithm 

achieves the values in the range of 0.955 to 0.999. It indicates that the CNN algorithm effectively preserves the real 

signal data to ensure that the essential characteristics of the MT signal remain intact. The LSTM algorithm produces 

the values in the range of 0.928 to 0.999. It is slightly less than the correlation coefficient’s result from CNN algorithm 

in the Ex channel (0.955 in CNN and 0.928 in LSTM); Ey channel (0.970 in CNN to 0.963 in LSTM); Hx channel 

(0.997 in CNN and 0.994 in LSTM); and Hy channel (0.993 in CNN and 0.984 in LSTM). The interesting result 

happened in Hz channel when both CNN and LSTM algorithms had exact same value if 0.999 [26, 35]. 

For NMSE analysis, CNN algorithm also shows better performance than LSTM algorithm. In general, CNN 

algorithm had lower NMSE value rather than LSTM algorithm. The CNN algorithm produces the NMSE values in the 

range of 0.006 to 0.0033; while the LSTM algorithm produces the NMSE values in the range iof 0.008 to 0.036. These 

values range is relatively low for NMSE, so those two algorithms are producing good denoising signal in this research. 

The NMSE value's difference among those algorithms in each MT channel is very thin. CNN algorithm products were 

promising better result with lower NMSE value in Ex channel (0.006 in CNN and 0.008 in LSTM); Ey channel (0.014 

in CNN and 0.019 in LSTM); Hx channel (0.007 in CNN and 0.015 in LSTM); Hy channel (0.006 in CNN and 0.016 

in LSTM); also Hz channel (0.033 in CNN and 0.036 in LSTM) [61]. 

Table 9. Comparison of Correlation Coefficient and NMSE Between CNN and LSTM Models Across Channels 

Channel 
CNN LSTM 

Correlation coefficient NMSE Correlation coefficient NMSE 

Ex 0.955 0.006 0.928 0.008 

Ey 0.970 0.014 0.963 0.019 

Hx 0.997 0.007 0.994 0.015 

Hy 0.993 0.006 0.984 0.016 

Hz 0.999 0.033 0.999 0.036 
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Figure 26. Comparison of Correlation Coefficient and NMSE Metrics Between CNN and LSTM Across All Channels 

Correlation coefficient and NMSE values are supporting the SNR analysis in evaluating the denoising results of 

CNN and LSTM on MT data, if the CNN algorithm promising better performance than LSTM algorithm. The 

combination of higher correlation coefficients and lower NMSE for CNN algorithm rather than LSTM algorithm, 

illustrating the effectiveness of CNN algorithm in preserving the real signal structure and promising better signal noise 

elimination compared to LSTM [27]. 

The performance of CNN and LSTM algorithms in this research shows clear differences based on the MT signal 

denoising process characteristics. CNN has proven to be superior with distinct and stable recurring amplitude patterns 

that are localized, sporadic, irregular, and characterized by infrequent fluctuations. These characteristics are easier to 

identify, simplifying the denoising process, as they align well with CNN's mechanism, which focuses on local 

patterns. In contrast, LSTM algorithm faces limitation in handling the electromagnetic noise that is more evenly 

distributed with constant amplitude. The denoised signal does not result in significant fluctuations and remains 

smooth. LSTM algorithm in sequential processing gave intention to capture long-term temporal signal patterns and 

made it less effective for sporadic noise. Furthermore, the lack of temporal structure in MT noise often exacerbates 

LSTM algorithm performance issues [3]. 

Processing time is the computation information that potentially influence the machine learning algorithm 

preference for MT signal denoising. Efficiency evaluation by examining the computational time required by each 

algorithm for denoising MT data to determine which algorithm provides better efficient computation process. Figure 

27 illustrates the comparison of computation times, where CNN algorithm outperforms LSTM algorithm in efficient 

computation time across all MT channels. CNN algorithm needs 24.83 to 29.16 seconds to process the MT signal 

denoising, while LSTM algorithm requires 67.38 to 70.69 seconds. It is showed if CNN algorithm has processed MT 

signal denoising approximately 3 times faster than LSTM algorithm [26].  

 

Figure 27. Comparison of Computing Time Between CNN and LSTM Models Across Channels 
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This computation time difference is caused by CNN algorithm ability to capture local patterns without relying on 

data sequences, making it highly effective in addressing local and sporadic noise commonly found in MT signal data. 

It is also supported by CNN algorithm architecture that worked on convolutional layers to detect key patterns in the 

MT signal data. CNN proves to be more relevant and suitable for denoising tasks on MT signal data. The overall 

results of the analysis indicate that CNN has a significant advantage over LSTM in denoising MT signal data, both in 

terms of effectiveness and efficiency [35]. 

Referring to previous research with similar research methods, this research promises more efficient computation 

processing time. The CNN algorithm application to denoise MT signal processing previously did in 92 seconds [26]. 

There is potential if the previous research used larger MT signal dataset and caused the computation processing time 

longer than CNN algorithm application in this research (24.83 to 29.16 seconds). There is limited information about 

time processing in LSTM algorithm in MT signal denoising in previous research. With approximately 67.38 to 70.69 

seconds in LSTM's denoising algorithm, it is still promising to be used as denoising algorithm in MT signal data. 

Further challenges will be related to larger and complex MT signal dataset, where the indication is potentially 

impacting the computation time needed to denoise its MT signal dataset. Larger and more complex MT signal dataset 

will affect longer computation time, but it is potentially addressed by advance computing devices and efficient 

computation scripts [61].  

This research is potentially developed for other research in geophysics and non-geophysics problems. One-

dimension (1D) data like MT signal in this research, is similar to other geophysical data, such as passive seismic and 

well-log data [62]. Both CNN and LSTM algorithms are potentially used to analyse the potential noise and find the 

denoising algirthm to improve its data quality. Due to its work's mechanism in recognising data pattern and temporal 

sequential value distribution, CNN aldn LSTM algorithm is very potential to develop into two-dimensions (2D) and 

three-dimensions (3D) datasets, where it will be helpful to enhance spatial resolution and reveal potential unidentified 

feature in geoscience application [24]. 

4. Conclusions 

This study provides in-depth insights into the performance of two deep learning algorithms, CNN and LSTM, in 

denoising MT data. The evaluation covers effectiveness, efficiency, and the suitability of each method for the data's 

characteristics, resulting in the following key points: 

 Effectiveness — CNN demonstrates superior performance compared to LSTM in denoising MT data, as evidenced 

by the evaluation metrics. CNN significantly improves SNR, achieves lower NMSE values, and maintains higher 

correlation coefficients, reflecting its ability to preserve the relationship between the original signal and the 

denoising results. 

 Efficiency — CNN demonstrates computation times that are 2 to 3 times faster than LSTM across all channels for 

completing the denoising process, making CNN a more resource-efficient choice. 

 Alignment with MT Data Characteristics — CNN is more suitable and optimal for handling noise in MT data due to 

its architecture, which focuses on local patterns without relying on data sequences. This makes it highly effective at 

addressing local and sporadic noise commonly found in MT data, such as in the Hx and Hy channels, which exhibit 

stable recurring amplitude patterns, irregular noise, and large but infrequent fluctuations. In contrast, LSTM, with its 

sequential approach for capturing long-term temporal relationships, is less effective for MT data, which often 

contains unstructured noise. This is particularly evident in the Hz channel, where noise is evenly distributed with 

constant amplitude. These characteristics result in LSTM's performance being lower than CNN in denoising MT 

data. 

This experiment demonstrates that CNN is more effective and efficient than LSTM for denoising MT data, achieving 

significant SNR improvements, low NMSE, higher correlation coefficients, and faster computation times. In the field of 

geophysics, these results are critical as high-quality MT data supports accurate subsurface exploration and geological 

mapping. These outcomes provide guidance for geophysics practitioners in selecting the appropriate algorithm while also 

paving the way for optimizing alternative models or hybrid architectures for more complex geophysical applications in the 

future. 

4.1. Limitations and Post-Study Plan 

This research holds significant potential for further development, despite some current limitations, such as the use 

of a single dataset, computational resource constraints, and the lack of exploration into alternative models that may 

better align with the data characteristics. Furthermore, the model's evaluation has so far been limited to quantitative 

metrics such as SNR, NMSE, and correlation coefficient, without incorporating qualitative assessments or testing 

against more complex noise variations. To address these limitations, future research plans include validating the model 

on diverse datasets, exploring new model architectures that are more adaptive to noise variations, and applying 

alternative approaches such as Transformer-based models or hybrid architectures to achieve more optimal results. 
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Additional studies will also focus on optimizing computational efficiency, testing with supplementary evaluation 

metrics including qualitative aspects and integrating real-time denoising systems. This research strongly aligns with 

the Sustainable Development Goals (SDGs), particularly Goal 7 (Affordable and Clean Energy) and Goal 9 (Industry, 

Innovation, and Infrastructure). By developing effective and efficient denoising models, this study enhances 

geophysical data analysis, accelerates renewable energy exploration, and drives data-driven technological innovation. 

The initial success of these models provides a strong foundation for advancing sustainable solutions in the energy and 

industrial sectors in the future. 
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