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Abstract 

This research aims to develop a duration model for predicting the rise in water level during the initial impounding phase 

of a reservoir (from bed elevation to the normal storage volume elevation). The initial impounding of a reservoir 

represents the first test following the completion of dam construction, during which the reservoir begins to function as 
intended. Therefore, the expected outcome of this research is to formulate a model that estimates the duration required to 

fill the reservoir to its designated storage level. The study is conducted on 10 reservoirs. The methodology involves 

analysing existing conditions (based on observed data from initial impounding in several reservoirs), identifying 

influential variables, and developing a predictive model for reservoir impounding duration. The research begins with a 

review of elevation data recorded during the impounding process across selected reservoirs. Field data are filtered to 

extract continuous daily elevation records from reservoirs that underwent a single-stage impounding process. A linear 
regression model is employed to predict the duration of reservoir impounding, as it provides clear, interpretable results 

and supports accurate decision-making during the implementation phase. By using the base equation of linear regression: 

Ln(D) = m × Ln(S) + n × Ln(Inet) and based on the analysis result of 28 combinations, there is selected the 

combination with the best determination coefficient (R2) that is 0.99 with m = 1.047 and n = -1.08807. After being 

carried out the verification to 4 locations of dams that are processing the reservoir impounding, it is produced good 

determination coefficient and it is near to 1, so there is obtained the linear regression equation for analyzing the 
impounding time by using data of reservoir storage volume (S) and net inflow (net inflow = inflow to reservoir – outflow 

from reservoir during the impounding process) as follows: 𝐿𝑛(𝐷(𝑟𝑙)) = 1.047 × 𝐿𝑛(𝑆) + (−1.08807) × Ln(Inet) .  

Keywords: Duration Model; Impounding; Water Level; Reservoir; Formulation. 

 

1. Introduction 

The initial impounding of a reservoir serves as the first test to determine whether the dam will function as planned. 
Once dam construction is completed, the diversion tunnel is closed, allowing river flow to enter the dam site and begin 

filling the reservoir with water [1]. This first impounding can be defined as the rise in water level from the riverbed up 
to the desired operational head. The duration and rate of initial reservoir impounding can vary depending on factors 
such as the dam's location, type, size, and purpose. During the impounding phase, certain construction activities must 
be completed within a limited timeframe, as water level rises due to the closure of the diversion tunnel, hydro-
mechanical operations [2], and ongoing monitoring of instruments and the dam body. 

At the start of the impounding process, the diversion tunnel gate is closed, causing the reservoir’s water level to 
gradually rise. The rate of this rise is influenced by several factors, including the season in which impounding 
occurs—whether dry or rainy [3, 4]. For safety reasons, particularly concerning the integrity of the dam structure, it is 
generally recommended that the daily increase in water level not exceed 1.0 meter per day [5]. Therefore, a predictive 
formulation is essential to estimate the impounding duration. This study aims to model the process by analysing 
observed impounding data and identifying the influencing variables. 
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According to Tschernutter & Kainrath [6], every reservoir impounding requires an understanding of the load 
impact and deformation behaviour of the dam body and core. Wang et al. [7] emphasized that determining the initial 
impounding period and its procedure is a research priority, which should be based on a comprehensive understanding 
of natural conditions, including the timing of normal discharge and flood events. Meanwhile, Liu et al. [8] suggested 
that reservoir impounding should follow a well-designed scheme and accurate algorithm, ideally initiated after the end 
of the rainy season. Their findings, when applied to reservoirs in Indonesia, indicate that water level elevation 
increases can be more accurately predicted under normal discharge conditions. 

Researchers observing the impounding process at the Three Gorges Reservoir in Chongqing Municipality, Hubei 
Province, China, reported that changes in water level elevation affect both downstream reservoir operations and 
hydrological conditions. Their study analysed the relationship between hydraulic gradient and discharge ratio in the 
downstream river [9]. In this context, variables such as rainfall, inflow and outflow discharge, the ratio between 
storage and inflow volume, watershed area, and evaporation will be examined to develop the reservoir impounding 
equation. A hydrological statistical approach is used in the model analysis, evaluating data from 10 reservoirs, from 
bed elevation to normal storage elevation. The experience of small-scale reservoir impounding (309,000 m³) in 
Qionglin Reservoir on Kinmen Island, Taiwan, as reported by Hung et al. [10], concluded that rainfall plays a crucial 
role in impounding, especially in climates where evaporation significantly exceeds rainfall depth. 

According to He et al. [11], reservoir impounding operations can be accurately modelled when initiated from 
either the Minimum Operating Level (MOL) or the Full Supply Level (FSL). In Figure 1, the upper limit elevation 
is referred to as the “annual top of buffer pool.” However, in this study, the impounding model begins from the 
riverbed elevation. Since the initial impounding of a reservoir is a critical phase in dam development, it is 
essential for dam engineers to maintain control over this process. This ensures strategic oversight and the 
implementation of appropriate work methods, including precise supervision, observation, and analysis of 
instrument data. 

To improve the accuracy of reservoir water level predictions, a statistical analysis approach is employed. 
Seasonal variations, changing rainfall patterns due to climate change, and fluctuating water demands present 
significant challenges in optimizing reservoir impounding [12]. Nonetheless, accurate prediction of the 
impounding process is vital for effective water resource design and management. Linear regression analysis is 
used to model the relationship between total reservoir volume, average inflow, and impounding time in order to 
identify a reliable predictive model. Using data from 10 different reservoirs, this study develops a series of linear 
regression models [13] with varying levels of complexity and evaluates their performance based on Root Mean 
Square Error (RMSE) [14]. 

This research aims to develop a model for predicting the duration of water level rise during reservoir 
impounding (from bed elevation to normal storage volume elevation) by analysing existing conditions (based on 
observed impounding data from various reservoirs) and the influencing variables. The expected outcome is a 
predictive model that helps minimize the time required to raise the water level from the bed to the normal storage 
elevation. 

2. Material and Methods 

2.1. Research Location  

Model formulation of initial impounding is built by using the observed data elevation during the initial impounding 
of reservoir that are taken from some dams as presented in Tables 1 and 2, Figures 1 and 2.   

Table 1. Locations for Calibration of Model Simulation  

1) Jatigede Reservoir 
-6.856393° 

108.096502° 
Sumedang Regency, Jawa Barat 

2) Kuningan Reservoir 
-7.063538° 

108.706065° 
Kuningan Regency, Jawa Barat 

3) Gongseng Reservoir 
-7.362705° 

111.901293° 
Bojonegoro Regency, Jawa Timur 

4) Kuningan Reservoir 
-7.063538° 

108.706065° 
Kuningan Regency, Jawa Barat 

5) Pidekso Reservoir 
-8.036884° 

110.997033° 
Wonogiri Regency, Jawa Tengah 

6) Gondang Reservoir 
-7.567428° 

111.078189° 
Karanganyar Regency, Jawa Tengah 

7) Rotiklot Reservoir 
-9.067193°, 

124.836406° 
Sumbawa Regency, Provinsi Nusa Tenggara Timur 

8) Titab Uaran Reservoir 
8° 14.664'S, 

114° 56.579'E 
Desa Busungbiu, Kecamatan Busungbiu, Buleleng Regency 

9) Tukul Reservoir 
-8.059114° 

111.138851° 
Pacitan Regency, Jawa Timur 

10) Karian Reservoir 
-6.413716° 

106.283824° 
Rangkasbitung, Lebak Regency, Provinsi Banten 
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Table 2. Locations for Validation of Model  

a) Jlantah Reservoir 
7°42'43.36"S 

111° 4'50.55"E 
Karanganyar Regency, Jawa Tengah 

b) Pamukkulu Reservoir 
5°23'59.14"S 

119°35'39.11"E 
Takalar Regency, Provinsi Sulawesi Selatan 

c) Sidan Reservoir 
8°18'58.67"S 

115°14'54.06"E 
Badung Regency, Provinsi Bali 

d) Cipanas Reservoir 
6°39'51.54"S 

108° 1'40.41"E 
Sumedang Regency, Provinsi Jawa Barat 

 

 

Figure 1. Location Map of Indonesia Country and Reservoirs Location 

 

Figure 2. Location Map of The Study 

2.2. Initial Impounding of Reservoir     

The initial step in the reservoir impounding process is to close the diversion tunnel gate, allowing the water level to 

gradually rise. The rate of water level increase in the reservoir is influenced by the timing of the impounding—

whether it occurs during the rainy or dry season. For safety reasons related to the dam structure, the daily rise is 

regulated to not exceed 1.0 meter per day. Based on observations of reservoir water level elevation during the initial 

impounding phase [10, 15], it has been found that a parabolic equation, specifically a first-degree polynomial, best 

represents the relationship between elevation and time during this process. 

According to Bhadoriya et al. [16], accurately modelling reservoir impounding operations typically starts from the 

Minimum Operating Level (MOL) or lower limit elevation and proceeds to the Full Supply Level (FSL) or upper limit 

elevation. In the Figures 3 and 4, the upper limit elevation is labeled as the “annual top of buffer pool.” In contrast, 

this study develops a model beginning from the riverbed elevation. 
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Figure 3. Process of Reservoir Impounding Operation [11] 

 

Figure 4. Illustration of Impounding Simulation 

2.3. Reservoir Simulation Theory 

Jain et al. [17] stated “A reservoir is operated according to a set of rules or guidelines for storing and releasing 

water, depending on the purposes it is required to serve. Decisions regarding water releases are made for different time 

periods in accordance with the demands. One commonly used method for reservoir management is based on rule 

curves. The following formula is used.” Rule curves are frequently employed to simulate reservoir operations, and the 

corresponding formulation is as follows: 

Storage volumei = Storage volumei−1 + Inflow − Demand − Evaporation − Spillout (1) 

The increase in reservoir water level during the impounding period is analysed using this equation, assuming that 

the initial storage V0 = 0. In some cases, the outflow demand is also zero, or outflow does not occur until the reservoir 

water level reaches the full elevation as specified in the design. 

Meanwhile, according to Linsley & Franzini [18], the change in water level elevation in a natural channel is based 

on the principle of continuity, which is applied to river systems. The formulation is as follows: 

Initial 31 August 2015 
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𝑦̂ = 𝑏 + 𝑎 ∙ log 𝑋 (2) 

where: 𝐼 and 𝑂 = average inflow and outflow for the time period of ∆𝑡. ∆𝑠 = water volume change in channel that is 

located between the sections of inflow and outflow during the period of ∆𝑡. 

If 𝑂 can be measured using a flow meter structure or a staff gauge (peilschaal) and is referred to as outflow, then 𝐼 

can be calculated based on the analysis of ∆𝑠. The value of ∆𝑠 can be approximated using the reservoir capacity curve. 

If the average discharge during a given period is equal to the average discharge at the beginning and end of that 

period, then Equation 1 simplifies to: 

𝐼1+𝐼2

2
∆𝑡 −

𝑂1+𝑂2

2
∆𝑡 = 𝑠2 − 𝑠1  (3) 

2.4. Analysis of Reservoir Impounding Model  

According to Yin et al. [2], optimal initial impounding and the impounding process are influenced by the 

stochastic characteristics of natural river flow, and flood events must be considered during the impounding 

phase. Wang et al. [7] conducted a study comparing water availability (accumulated inflow) and the required 

design volume to estimate the reservoir impounding duration. In their model, Wang et al. [7] introduced an 

additional index that illustrates the potential for the highest interannual fluctuation. By developing such a model, 

the regulation of reservoir impounding operations can be formulated through an algorithmic approach, enabling 

the initial impounding to begin at the end of the flood season [3]. Based on several studies, in a stochastic 

context, the rise in reservoir water level elevation is influenced by both inflow into the reservoir and outflow 

from it. 

The linear regression model is selected due to its simplicity, ease of interpretation, and effectiveness in modelling 

linear relationships between independent and dependent variables. Additionally, linear regression is widely applied in 

hydrology because of its reliability when dealing with limited datasets and its relatively stable distribution properties. 

Masselot et al. [19] introduced the functional linear model and applied it to hydrological forecasting, enabling the 

prediction of the entire flow curve rather than just specific daily or hourly points. River flow, as a natural 

phenomenon, exhibits continuous behaviour over time, similar to meteorological variables that influence its 

variability. The functional linear model operates on curves instead of discrete values, allowing it to capture the full 

process rather than just isolated time-based observations. 

A linear regression approach was employed to develop this model due to its simplicity, interpretability, and 

effectiveness in capturing linear relationships. Its proven reliability in hydrology, especially when working with 

limited datasets, highlights its practical value. In 2016, Masselot et al. [19] introduced the functional linear model 

for hydrological forecasting. Unlike traditional models that predict isolated data points, this method forecasts the 

entire flow curve. Given that both river flow and the meteorological variables influencing it are continuous 

phenomena, a curve-based model allows for a more holistic analysis of the hydrological process. By accurately 

capturing the full temporal dynamics, it enhances forecasting accuracy and provides deeper insight into water 

behaviour. 

The volume of reservoir impounding, in the context of initial reservoir filling, refers to the volume calculated over 

the duration from the river bed elevation up to the reservoir’s normal full condition—also known as the Full Supply 

Level (FSL) or Normal Water Level (NWL). This does not include the High-Water Level (HWL), which is associated 

with flood conditions and overflow through the spillway. Figure 5 illustrates the volume boundary used in the model: 

the lower limit is the river bed elevation, and the upper limit is the full reservoir elevation, marked by red vertical 

lines. The height of the reservoir impounding, therefore, represents the elevation difference between these two 

boundaries. 

2.5. Boundary Condition of Reservoir Impounding 

The volume of reservoir impounding refers to the volume accumulated over a defined period, starting from the bed 

elevation up to the reservoir's normal full condition—also known as the Full Supply Level (FSL) or Normal Water 

Level (NWL). It does not include the High-Water Level (HWL), which corresponds to flood conditions when 

overflow occurs through the spillway. Figure 5 illustrates the volume boundaries considered in the model, marked by 

red vertical lines, where the lower limit represents the river bed elevation and the upper limit corresponds to the full 

reservoir elevation. The height of the reservoir impounding, therefore, is defined as the elevation difference between 

these two limits. 
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Figure 5. Illustration of Reservoir Volume Boundary that is Modelled 

3. Results and Discussion 

3.1. Evaluation of Initial Variable for Model     

The variables and their explanations are as follows: 

 Independent variables include storage depth, the reservoir’s capacity curve, reservoir volume, and watershed 

area. The reservoir volume refers to the target volume at the first-stage impounding. 

 Intermediate variables (which also serve as independent variables) include daily inflow and outflow (analysed 

based on demand or as a percentage of inflow), average inflow and outflow, and rainfall observed during the 

impounding process. 

 Dependent variables include the design elevation (y2t) at time t and the duration (y1) of the water level rise 

from the reservoir bed elevation to the design storage volume. 

Data related to the initial impounding used in the model is presented in Table 3. 

Table 3. Initial Assessment of Data to Variable 

No. 
Name of 

reservoir 

Watershed 

area (A) 

Total 

volume (V) 

Height 

(H) 

Average 

inflow (I) 

Average 

outflow (O) 

Rainfall 

(P) 

Ratio 

Vi/Vt  

Evapo-

transpiration 
Duration 

x1 x2 x3 x4 x5 x6 x7 x8 Y 

(km2) (Million m3) (m) (m3/s) (m3/s) (mm)     (day) 

1 Jatigede 1460.00 727.08 88,85 72.67 110.07 2559.10 3.16 1533.00 472.00 

2 Kuningan 23.07 24.65 28.10 1.03 0.09 942.64 1.62 1447.75 287.00 

3 Gongseng 51.21 22.43 22.09 2.32 0.00 251.77 3.13 1443.47 114.00 

4 Bendo 120.63 43.46 67.82 2.52 0.00 867.20 4.18 1635.81 203.00 

5 Pidekso 55.00 24.55 25.55 0.93 0.78 880.44 2.85 1262.98 123.00 

6 Gondang 19.18 7.09 36.12 0.79 0.26 2806.00 6.23 1410.23 157.00 

7 Lolak 73.11 16.23 58.00 3.31 0.00 1022.50 6.43 1669.66 213.00 

8 Titab 69.54 12.80 46.00 8.13 6.21 674.80 13.53 1861.86 66.00 

9 Tukul 47.10 8.63 63.71 1.03 0.67 2773.00 6.50 1638.55 371.00 

10 Karian +57.50 288.00 126.49 37.50 11.96 1.84 1209.92 3.12 1200.00 145.00 

11 Sindang Heula 73.47 9.99 20.48 1.21 0.24 2430.59 4.17 1277.50 115.00 

According to Chen et al. [3], through model development, the formulation for regulating reservoir storage 

operations can be constructed using an algorithmic approach, and the initial impounding time can be further refined. 

Based on the discussion above, the rise in water level elevation is influenced by reservoir inflow (in a stochastic 

context) and outflow. Table 4 presents the correlation between daily elevation and variables x4, x5, and x6. Conversely, 

the ratio of Vi/Vt (x7) and evapotranspiration (x8) do not show a significant correlation. The linear regression model 

for impounding does not explicitly incorporate the sedimentation variable, which is indirectly represented through 

reservoir volume (x₂ ) based on its capacity curve. This implies that only one type of reservoir capacity curve is used 

per reservoir to determine the storage volume variable (x2). 

Border of 
reservoir 

volume 
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Table 4. Initial Assessment of Correlation between Daily Elevation and Variables of x4, x5, x6 

No. 
Name of 

reservoir 

Watershed 

area (A) 

Total 

volume (V) 

Tinggi 

(H) 

Average 

inflow (I) 

Average 

outflow (O) 

Rainfall 

(P) 

Ratio 

Vi/Vt 

Evapo-

transpiration 
Duration 

x1 x2 x3 x4 x5 x6 x7 x8 Y 

Correlation to Y 0.676 0.688 0.500 0.657 0.693 0.507 -0.301 0.181  

However, the approach by using daily elevation is presented in Table 5:      

Table 5. Correlation between Daily Elevation and x4, x5, x6 

No. Name of dam 

Correlation to 

Daily inflow 

(I) (x4) 

Daily outflow 

(O) (x5) 

Daily rainfall 

(P) (x6) 

1 Jatigede 0.58 0.69 0.23 

2 Kuningan 0.55 -0.02 -0.02 

3 Gongseng 0.46 0.00 0.22 

4 Bendo 0.52 0.00 0.32 

5 Pidekso 0.60 0.96 -0.02 

6 Gondang 0.45 -0.38 0.40 

7 Rotiklot -0.81 0.00 0.12 

8 Tukul 0.40 0.51 0.22 

Based on Tables 4 and 5, the variables of storage volume (x2), inflow (x4), and outflow (x5) are more significant 

than daily rainfall (x6) to the reservoir elevation change.      

3.2. Model Analysis of Reservoir Impounding Time with Linear Regression  

This analysis represents a stage in developing the reservoir impounding time model using a linear regression 

approach. Consistent with the work of Masselot et al. [19], this model incorporates a formulation that linearly relates 

time to inflow, outflow, and reservoir volume variables. However, when the model is used to determine the elevation 

at a specific time, a parabolic relationship emerges—an aspect that will be explored in future research. 

A linear regression model may require modifications for reservoirs located in different climate zones or 

geographical regions, as factors such as precipitation, temperature, and geological conditions significantly influence 

water flow dynamics. Studies have shown that hydrological modelling must be location-specific to produce more 

accurate results [20, 21]. Research by Schrunner et al. [22] introduces the Gaussian sliding window regression model, 

which offers an alternative approach to hydrological inference that is more adaptable to various geographical and 

climatic conditions. 

To solve the linear regression model (i.e., to analyse parameters m and n), six data sets are required, including 

duration (y), storage volume (x₂ ), reservoir inflow (x4), reservoir outflow (x6), and net inflow (x4 net), which is 

calculated based on the inflow and outflow values. The foundational equations for developing the model with these 

variables include the exact equation, regression equation, and the linear regression equation, as follows: 

𝐷𝑒𝑘𝑠𝑎𝑘 =
𝑆

𝐼𝑛𝑒𝑡
                                     (4) 

where: 𝐷𝑒𝑘𝑠𝑎𝑘  is duration based on the exact equation (day); S is volume of storage (1000 m3); 𝐼𝑛𝑒𝑡  is net inflow = (I – 

O) (1000 m3/ day); I is inflow to reservoir (1000 m3/ day); O is outflow from reservoir (1000 m3/ day). 

𝐷𝑟𝑒𝑔𝑟𝑒𝑠𝑖 = (𝑆)𝑚 × (𝐼𝑛𝑒𝑡)𝑛                                      (5) 

where: 𝐷𝑟𝑒𝑔𝑟𝑒𝑠𝑖  is duration based on the regression equation (day); m is parameter (to be calculated); n is parameter (to 

be calculated). 

Both Equations 4 and 5 are exact equations, however the linear regression equation is as follows:  

𝐿𝑛(𝐷(𝑟𝑒𝑔𝑟𝑒𝑠𝑖 𝑙𝑖𝑛𝑖𝑒𝑟)) = 𝑚 × 𝐿𝑛(𝑆) +  n × 𝐿𝑛(𝐼𝑛𝑒𝑡)                     (6) 

where: 𝐷𝑟𝑒𝑔𝑟𝑒𝑠𝑖 𝑙𝑖𝑛𝑖𝑒𝑟  = duration based on the linear regression equation (day). 

The steps for applying the combined data set linear regression method include: first, combining the data sets; then 

conducting the linear regression analysis; evaluating the coefficient of determination (R²); selecting the best 

combination; and finally, determining the values of n and m based on the highest R² value that is closest to 1. 
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3.3. Combination of Data Set 

To solve the linear regression model (for calculating the parameters m and n), six sets of data (D, S, I, and O) are 

required. This model uses eight data sets, which results in 28 possible combinations based on the binomial coefficient 

C(8,6) = 28. Therefore, from the eight data sets (D, S, I, and O), 28 alternative combinations are generated. Tables 6 

and 7 present the data used for the linear regression application. 

Tabel 6. Data for Application of Linear Regression-1 Model  

No. 
No. of 

selected raw 

 
D S I O 

Name of 

reservoir 

Duration 
Volume of 

reservoir storage 
Average inflow Average outflow 

[day] [million mᶟ] [mᶟ/s] [mᶟ/s] 

1 2 Kuningan 287.00 24.65 1.03 0.09 

2 3 Gongseng 114.00 22.43 2.32 0.00 

3 4 Bendo 203.00 43.46 2.52 0.00 

4 5 Pidekso 123.00 24.55 0.93 0.78 

5 6 Gondang 157.00 7.09 0.79 0.26 

6 8 Lolak 213.00 16.23 3.31 0.00 

7 10 Tukul 371.00 8.63 1.03 0.67 

8 12 Karian +57.50 145.00 126.49 11.96 1.84 

Table 7. Tabel of Data for Application of Linear-Regression-2 Model  

D 

[day] 

S 

[million mᶟ] 

I_net 

[million mᶟ/day] 

287.00 24650.0 80.96 

114.00 22430.0 200.10 

203.00 43458.0 217.73 

123.00 24550.0 12.69 

157.00 7090.0 45.79 

213.00 16230.0 285.80 

371.00 8630.0 31.10 

145.00 126490.0 874.35 

3.4. Analysis of Linear Regression 

For every alternative of combination, there is carried out the analysis of linear regression (with the function of 

LINEST) that produces the coefficient of 𝑛 and 𝑚 as presented in Table 8.      

Table 8. Analysis of Linear Regression Due to the Function of LINEST 

Ln(D) Ln(S)  Ln(I_net)      

   

n m 

5.31321 10.67955 5.38325 

   

-0.1550 0.5880 

4.81218 10.10847 2.54051 

   

0.30 0.14 

5.05625 8.86644 3.82411 

  

R² 0.98144 0.88 

5.36129 9.69462 5.65528 

   

105.76 4.00 

5.91620 9.06300 3.43734 

   

162.39 3.07 

4.97673 11.74792 6.77348 

     

From the analysis of each combination alternative, the following are obtained: (1) the coefficient of determination 

(R²); (2) parameter m; and (3) parameter n. The combination alternative with the highest coefficient of 

determination—i.e., the value closest to 1—is considered the best. Table 9 presents the analysis results of R², n, and m 

for each combination. 
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Table 9. Analysis of R2, n, and m from Each Combination 

 
R² 

   

Average 0.98783 
   

Max. 0.99966 
   

Min. 0.98024 
   

     

No. 
Calculated Parameter 

 

R² m n 
 

1 0.99454 0.47394 0.09857 
 

2 0.98692 0.56107 -0.06790 
 

3 0.99070 0.57213 -0.17071 
 

4 0.98747 0.53242 -0.00421 
 

5 0.99049 0.51273 -0.04192 
 

6 0.98404 0.62854 -0.27278 
 

7 0.99437 0.82299 -0.57631 
 

8 0.99308 0.80779 -0.58775 
 

9 0.99966 1.04700 -1.08807 
 

10 0.99226 0.91533 -0.78588 
 

11 0.98783 0.52832 0.03345 
 

12 0.98783 0.53694 -0.07494 
 

13 0.98228 0.64128 -0.28682 
 

14 0.98120 0.59289 -0.17170 
 

15 0.99249 0.91229 -0.77309 
 

16 0.98999 0.50968 0.08435 
 

17 0.98870 0.53249 -0.05780 
 

18 0.98311 0.63444 -0.26478 
 

19 0.98234 0.58774 -0.15399 
 

20 0.99287 0.90142 -0.75040 
 

21 0.98133 0.59667 -0.15418 
 

22 0.98675 0.53344 -0.00590 
 

23 0.98999 0.51054 -0.03976 
 

24 0.98324 0.62824 -0.27357 
 

25 0.98207 0.57583 -0.15342 
 

26 0.99209 0.92909 -0.80968 
 

27 0.98024 0.59293 -0.17248 
 

28 0.98144 0.58801 -0.15501 
 

3.5. Evaluation of Determination Coefficient (R2) 

The combination alternatives of data sets with the highest coefficient of determination (R²)—that is, the value 

closest to 1—are selected as the best combinations. These combinations provide the most accurate linear regression 

model in illustrating the relationship among the variables D, S, I, and O. Figure 6 presents a ranking of the 

combinations from highest to lowest based on their R² values, identifying the best composition accordingly. 

Additionally, the ranking of the determination coefficients is illustrated in a graph. 
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Figure 6. Graphic of 28 Combinations of n and m and R2 (Determination Coefficient) 

3.6. Selection of the Best Combination  

The combination alternatives of data sets with the highest coefficient of determination (R²)—i.e., those closest to 

1—are selected as the best combinations. These provide the most accurate linear regression model for illustrating the 

relationship among the variables D, S, I, and O. This process enables the identification of the most reliable model for 

representing the factors influencing the reservoir’s initial impounding time. By using the optimal combination of data 

sets (Table 10), the accuracy of predicting the variables that affect the impounding duration can be significantly 

improved. 

Table 10. Parameter of the Best Model 

The best 
Parameter of the best model No. 

R² m n Composition 

1 0.99966 1.04700 -1.08807 9 

Based on the analysis result of linear regression, there is obtained the best determination coefficient (R2) is 0.99966 

or number 9 of compositions, with the value of m = 1.047 and n = -1.08807.    

The comparison results between observed reservoir impounding time in each dam with the exact method, and by 

applying n and m from the linear regression, is presented in Table 11.  

Table 11.  Application Result Comparison of Linear Regression Coefficient between Observed Data and Exact Formulation 

No. Composition Reservoir 

Comparation of duration 

Dlinear regression (day) 

Observed data 
Regression 

model 

Formulation 

(S)/(I-O) 

1 1 Kuningan 287.00 332.59 304.48 

2 2 Gongseng 114.00 112.56 112.09 

3 3 Bendo 203.00 205.23 199.60 

4 5 Gondang 157.00 167.71 154.83 

5 7 Tukul 371.00 313.84 277.46 

6 8 Karian +57.50 145.00 138.38 144.67 

Based on the analysis, the difference between the observed data and the linear regression model application is 

0.43%, while the exact calculation yields a difference of -4.01%. Therefore, the linear regression model with 

parameters m = 1.047 and n = -1.08807 can be effectively used for modelling the reservoir impounding time, as it 

R2, 1, 0.99966
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results in a minimal average error. Table 12 presents the comparison between the observed data, the regression model, 

and the exact formulation. 

Table 12. The Difference between Observed Data, Regression Model, and Exact Formula 

No. Composition Reservoir 

Comparison of duration 

Percentage 

error of model 

Percentage 

error of 

formula 

D (day) 

Recorded 

data 

Regression 

model 

Formula 

(S)/(I-O) 

1 1 Kuningan 287.00 332.59 304.48 15.89% 6.09% 

2 2 Gongseng 114.00 112.56 112.09 -1.26% -1.67% 

3 3 Bendo 203.00 205.23 199.60 1.10% -1.68% 

4 5 Gondang 157.00 167.71 154.83 6.82% -1.38% 

5 7 Tukul 371.00 313.84 277.46 -15.41% -25.21% 

6 8 Karian +57.50 145.00 138.38 144.67 -4.56% -0.23% 

      
0.43% -4.01% 

Based on the analysis above, the equation of exact regression model that can be used is as follows: 

D regression = (S)1.047 × (Inet)n-1.08807                              (7) 

where: D regression is duration based on the regression equation (day); m is parameter =1.047; n is parameter = -1.08807. 

Based on the equation-7, the linear regression is as follows:  

𝐿𝑛(𝐷(𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)) = 1.047 × 𝐿𝑛(𝑆) + (−1.08807) × 𝐿𝑛(𝐼𝑛𝑒𝑡)                   (8) 

        where: 𝐷𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  is duration based on the linear regression equation (day). 

The analysis results indicate that the linear regression model can predict inflow with reasonable accuracy under 

normal conditions. However, we recognize that this model may not fully account for substantial inflow fluctuations 

caused by extreme weather events. Linear regression relies on the assumption of a linear relationship and homogeneity 

of variance, both of which can be affected by outliers or extreme data points. To address this limitation, we plan to 

investigate alternative approaches—such as robust regression or non-parametric models—and incorporate variables 

that represent extreme weather conditions in future studies. 

3.7. Model Validation 

Cross-validation of the model was performed to evaluate its generalizability beyond the initially selected 

reservoirs. This validation involved observing four additional reservoirs in Indonesia that were undergoing the 

impounding process between 2023 and 2024. The assessment included daily monitoring of water level, outflow, and 

technical data to calculate daily inflow. By applying the derived equation Ln(D) = 1.047 × Ln(S) + (−1.08807) × Ln 

(Inet), the estimated reservoir impounding time closely matched the observed duration. 

Moriasi et al. [23] recommend using three quantitative metrics—Nash-Sutcliffe Efficiency (NSE), Percent Bias 

(PBIAS), and the Ratio of the Root Mean Square Error to the Standard Deviation of measured data (RSR)—along 

with graphical techniques for model evaluation. The graphical results demonstrated a correlation exceeding 98% 

between the observed data and the model-predicted impounding duration. The model yielded the highest R², 

confirming its suitability as the best-performing model for the dataset used in this study. Table 13 presents the 

validation results from the four additional reservoirs, and Figure 7 illustrates the graphical comparison between the 

observed and calculated durations. 

Table 13. Validation Result with Four Additional Reservoirs 

No. Reservoir Name 
Initial Impounding 

date 

Impounding Duration 

R2 
D (observed) 

(days) 

D (model) 

(days) 

1 Jlantah Dam 20-Dec-24 46.00 44.32 

98.43% 

2 Pamukkulu Dam 19-Apr-24 257.00 257.86 

3 Sidan Dam 18-Nov-24 64.00 61.97 

4 Cipanas Dam 19-May-23 296.00 257.26 
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Figure 7. Graphical of Comparison between Observed and Calculated Duration 

The performance of the calibrated model was evaluated using the Nash–Sutcliffe Model Efficiency (NSE). 

Skhakhfa & Ouerdachi [24] applied the NSE to assess the level of agreement between observed and simulated values. 

The NSE is commonly used to measure how well the model predictions match the observed data. Mathematically, it is 

expressed as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝐵𝑆𝐼−𝑆𝐼𝑀𝑖)2𝑛

𝑖=1

∑ (𝑂𝐵𝑆𝐼−𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

                    (9)                                       

Where: NS is Nash-Sutcliffe Efficiency (NS); 𝑆𝐼𝑀𝑖  represents the predicted values (model outputs); 𝑂𝐵𝑆𝐼  represents 

the observed values (data points); 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  is the mean of the observed values (m3/s); n is the total number of 

observations. 

The model's performance was evaluated using three statistical measures: the Nash-Sutcliffe Efficiency (NSE), 

Percent Bias (PBIAS), and the Ratio of the Root Mean Square Error to the Standard Deviation of Observed Data 

(RSR). In general, model simulation can be judged as satisfactory if NSE > 0.50 and RSR < 0.70, and if PBIAS + 25% 

for streamflow, PBIAS + 55% for sediment, and PBIAS + 70% for N and P [23]. By using the Equation 9, 

∑ (𝑂𝐵𝑆𝐼 − 𝑆𝐼𝑀𝑖)2𝑛
𝑖=1  is1879.18, ∑ (𝑂𝐵𝑆𝐼 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1  is found of 126641.50, NSE = 0.985, Nash–Sutcliffe 

efficiencies can range from ∞ to 1. An NSE value of 0.985 indicates that the model possesses excellent predictive 

capability, as it is very close to 1. This suggests that the simulated values closely align with the observed data. The 

PBIAS value of -0.50% reflects minimal bias, implying that the model slightly underestimates the observed values. 

Additionally, the RSR value of 0.117, which is well below the threshold of 0.50, confirms the model’s high accuracy 

and strong predictive reliability. These results demonstrate that the regression-based model is highly effective in 

estimating reservoir impounding time with minimal error. 

While a simple approach to estimate reservoir filling duration involves dividing the reservoir volume by the inflow 

discharge, this method is less accurate. During the impounding process, it is essential to regulate outflow discharge to 

control the rate of water level rise, ensuring it does not exceed 1.0 meter per day for the safety of embankment dams. 

Therefore, the validated model equation offers a more accurate estimate of the required duration. 

4. Conclusion 

The initial impounding of a reservoir is conducted after the completion of dam construction, beginning with the 

closure of the diversion tunnel gate, after which the water level gradually rises. The duration and rate of increase in 

reservoir water level are influenced by whether the initial impounding occurs during the dry or rainy season. For safety 

reasons, the rate of water level rise is regulated so that it does not exceed 1.0 meter per day to protect the dam 

structure. This study was conducted on 10 reservoirs that underwent single-stage impounding. The research began by 

analysing observed data on water level elevations during the initial impounding process in several dams. To develop 

the model, field data were first selected, focusing on continuous elevation records from the riverbed up to the spillway 

(full supply level). Verification was also performed using data from four additional dams currently undergoing initial 

impounding. Following the analysis using linear regression and selection based on the highest determination 
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coefficient (R²), the resulting linear regression equation for predicting reservoir impounding time is as follows: 

Ln(D(linear regression)) = 1.047 × 𝐿𝑛(𝑆) + (−1.08807) × Ln(Inet). The result of model evaluation method consists of NSE 

> 0.50 and RSR = 0.117 < 0.70, and if PBIAS = -0.50% < 25% for streamflow, demonstrate that the regression-based 

model is highly effective in estimating reservoir impounding time with minimal error. For further application, the 

linear regression model can be integrated into real-time decision-making tools for dam operators when combined with 

automated monitoring systems and hydrological sensors. The study by Skhakhfa & Ouerdachi [24] demonstrated the 

use of a real-time decision support system (DSS) for power generation and flood control, which consists of three key 

components: real-time operation and visualization for dam operators, a forecasting model, and optimized decision-

making modules. 
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