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Abstract 

For several decades, attempts have been made by several authors to develop models suitable for predicting the effects of 

Forchheimer flow on pressure transients in porous media. However, due to the complexity of the problem, they 

employed numerical and/or semi-analytical approaches, which greatly affected the accuracy and range of applicability of 

their results. Therefore, in order to increase accuracy and range of applicability, a purely analytical approach to solving 

this problem has been introduced and applied. Therefore, the objective of this paper is to develop a mathematical model 

suitable for quantifying the effects of turbulence on pressure transients in porous media by employing a purely analytical 

approach. The partial differential equation (PDE) that governs the unsteady-state flow in porous media under turbulent 

conditions is obtained by combining the Forchheimer equation with the continuity equation and equations of state. The 

obtained partial differential equation (PDE) is then presented in dimensionless form (by defining appropriate 

dimensionless variables) in order to enhance more generalization in application, and the method of Boltzmann Transform 

is employed to obtain an exact analytical solution of the dimensionless equation. Finally, the logarithmic approximation 

(for larger times) of the analytical solution is derived. Moreover, after rigorous mathematical modeling and analysis, a 

novel mathematical relationship between dimensionless time, dimensionless pressure, and dimensionless radius was 

obtained for an infinite reservoir dominated by turbulent flow. It was observed that this mathematical relationship bears 

some similarities with that of unsteady-state flow under laminar conditions. Their logarithmic approximations also share 

some similarities. In addition, the results obtained show the efficiency and accuracy of the Boltzmann Transform 

approach in solving this kind of complex problem. 

Keywords: Analytical Solution; Unsteady-state; Forchheimer Flow; Boltzmann Transform; Infinite Reservoirs. 

 

1. Introduction 

Darcy’s equation (which assumes a linear relationship between pressure gradient and velocity) is one of the 

fundamental equations of porous media flow. However, Darcy’s equation is only valid for viscous (laminar) flow. 

This is due to the fact that in turbulent flow, the relationship between pressure gradient and velocity is not linear. The 

Forchheimer equation emerged as an attempt to model the departure from Darcy’s law at high velocity. The 

Forchheimer equation is given as: 

−
dp

dr
=

𝜇

K
v + βρv2  
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The above equation governs non–Darcy flow in porous media. Attempts have been made by several authors to 

establish the validity of the Forchheimer equation and also demonstrate its applicability to porous media flow. 

Geertsma (1974) developed a relationship between the Forchheimer coefficient and rock properties and also validated 

the equation with experimental data [1]. Hassanizadeh & Gray (1987) provided the physical basis for the Forchheimer 

equation and identified the source of the non–linearity [2]. Giorgi (1997) derived the Forchheimer equation using 

matched asymptotic expansion [3].  

Zimmerman et al. (2004) confirmed the existence of a weak inertia regime and showed that the Forchheimer 

equation can probably be used over the entire range of Reynolds numbers [4]. Fourar et al. (2004) analyzed the effect 

of space dimensions on the development of flow regimes [5]. Lucas et al. (2007) presented that quadratic deviation in 

Forchheimer's law appears as a result of non-periodicity in porous media and fractures [6]. Several other authors have 

modelled the Forchheimer flow in porous media by employing the numerical method [7-13], and semi-analytical 

approach [14-25]. 

The objective of this paper is to develop a mathematical model suitable for quantifying the effects of turbulence on 

pressure transients in porous media by employing a purely analytical approach. The partial differential equation (PDE) 

that governs the unsteady-state flow in porous media under turbulent condition is obtained by combining the 

Forchheimer equation with the continuity equation and equations of state. The obtained partial differential equation 

(PDE) is then presented in dimensionless form (by defining appropriate dimensionless variables) in order to enhance 

more generalization in application, and the method of Boltzmann Transform is employed to obtain an exact analytical 

solution of the dimensionless equation. Finally, the logarithmic approximation (for larger times) of the analytical 

solution is derived. Moreover, after a rigorous mathematical modeling and analysis, a novel mathematical relationship 

between dimensionless time, dimensionless pressure, and dimensionless radius was obtained for an infinite reservoir 

dominated by turbulent flow. 

2. Research Methodology 

The flow chart below shows the processes involved in proffering a solution to the unsteady-state Forchheimer flow 

problem in an infinite reservoir by employing the Boltzmann Transform Approach. 

 

Figure 1. Flowchart of the research methodology 

2.1. Mathematical Development 

In this section, the equation that governs Forchheimer flow in porous media under unsteady-state conditions is 

derived. This equation is also presented in dimensionless form by defining the appropriate dimensionless variables in 

order to ensure a more generalized application. 

2.1.1. Mathematical Modeling of Forchheimer Flow 

The mathematical modeling of fluids transport in porous media involves the combination of three categories of 

equations, namely; the continuity equation, transport equation and the equations of state.  

The continuity equation for radial flow in porous media is given as:  

−
1

r
 

∂ 

∂r
(𝑒vr)= 

∂ 

∂t
(eϕ)                        (1) 

For the case of Forchheimer flow, the transport equation is the Forchheimer equation and it is given as:  

Derivation of the governing 
equation

Analytical solution of the 
derived equation by: 

Boltzmann Transform 
Approach

Logarithm approximation of the 
obtained Ei-solution

Investigation of the effect of 
forchheimer factor on 

dimensionless pressure

Investigation of the effect of 
forchheimer factor on 

reservoir pressure drop
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−
∂p

∂r
=

𝜇V

K
+ βev2                       (2) 

Finally, the set of equations of state for fluid and formation compressibility as given as follow: 

𝑐 = −
1

𝑣
 

𝜕𝑣

𝜕𝑝
                        3(a) 

𝑐 =
1

𝑒
 

𝜕𝑒

𝜕𝑝
                       3(b) 

𝐶𝑓 =
1

ϕ
 
𝜕ϕ

𝜕𝑝
                       3(c) 

Equations 3(a) and 3(b) describe fluids compressibility while Equation 3(c) is the equations for rock formation 

(porous media) compressibility. In order to obtain the mathematical expression for Forchheimer flow under unsteady-

state condition, Equations 1 to 3 must be combined.  Expanding the right-hand-side (RHS) of the Equation 1, we have: 

−
1

𝑟

∂

∂r
(𝑒𝑣𝑟) = 𝑒

𝜕ϕ

𝜕𝑡
+ ϕ

𝜕𝑒

𝜕𝑡
  

−
1

𝑟

∂

∂r
(𝑒𝑣𝑟) = 𝑒

𝜕ϕ

𝜕𝑡
.

𝜕𝑝

𝜕𝑡
+ ϕ

𝜕𝑒

𝜕𝑝
.

𝜕𝑝

𝜕𝑡
  

−
1

𝑟

𝜕

𝜕𝑟
(𝑒𝑣𝑟) = 𝑒ϕ [

1

ϕ

𝜕ϕ

𝜕𝑝
.

𝜕𝑝

𝜕𝑡
+

1

𝑒

𝜕𝑒

𝜕𝑝
.

𝜕𝑝

𝜕𝑡
]  

Substituting Equations 3(b) and 3(c) into the above equation yields:  

−
1

𝑟

∂

∂r
(𝑒𝑣𝑟) = 𝑒ϕ(𝐶𝑓 + 𝐶)

𝜕𝑝

𝜕𝑡
                       (4) 

Simplifying further, we have: 

−
1

𝑟

∂

∂r
(𝑒𝑣𝑟) = ϕ𝐶𝑡

𝜕𝑝

𝜕𝑡
                        (5) 

Where  𝐶𝑡 = 𝐶 + 𝐶𝑓 

Solving Equation 2 for v, we have: 

−
∂p

∂r
=

𝜇

𝐾
𝑣 + 𝛽𝑒𝑣2  

−
𝑘

𝜇

∂p

∂r
= 𝑣 +

𝛽𝑒𝑘𝑣2

𝜇
  

v = −
𝐹𝑘

𝜇

𝜕𝑝

𝜕𝑟
                           (6) 

where F is the parameter that accounts for the departure from Darcy’s viscous flow.  

Substituting Equation 6 into 5 we have:  

1

𝑟

∂

∂r
(

𝑟𝐹𝑘

𝜇

𝜕𝑝

𝜕𝑟
) =ϕ𝐶𝑡

𝜕𝑝

𝜕𝑡
                        (7) 

Expanding the above equations and simplifying further, we obtain the following equation 

𝜕2𝑝

𝜕𝑟2 +
1

𝑟

∂p

∂r
=

ϕ𝜇𝐶𝑡

𝑘𝐹

𝜕𝑝

𝜕𝑡
                         (8) 

The above equation governs Non-Darcy flow in porous media under unsteady-state condition. 

2.1.2. Dimensionless Transformation 

Presenting equations in dimensionless form has always been of great advantage in Science and Engineering as it 

makes results to be applicable on a more global scale. By defining the following dimensionless variables; 

tD =
2.637∗10−4kt

ϕ𝜇ctrw
2                        9(a) 

rD =
r

rw
                           9(b) 

PD =
7.08∗10−3KFh (Pί−P)

q𝜇B
                      9(c) 

Applying Equations 9(a) to 9(c) on Equation 8, we have: 

𝜕2𝑃𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷
 
∂𝑃𝐷

∂𝑟𝐷
=

1

𝐹

𝜕𝑃𝐷

𝜕𝑡𝐷
                      (10) 

Equation 10 above is the equation for Forchheimer flow in porous media under transient condition. For the case of 

constant rate production, the associated Initial and Boundary conditions are as follows: 
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PD (rD, tD = 0) = 0   

  

[rD
∂PD

∂rD
]

rD=1
= −1                            (11)  

 

PD(rD → ∞, tD) = 0 

3. Analytical Solution 

In the previous section, the following mathematical problem was developed: 

𝜕2𝑃𝐷

𝜕𝑟𝐷
2

+
1

𝑟𝐷

 
∂𝑃𝐷

∂𝑟𝐷

=
1

𝐹

𝜕𝑃𝐷

𝜕𝑡𝐷

 

𝑃𝐷 (𝑟𝐷, 𝑡𝐷 = 0) = 0 

[𝑟𝐷
𝜕𝑃𝐷

𝜕𝑟𝐷
]

𝑟𝐷=1
= −1  

𝑃𝐷 (𝑟𝐷 → ∞, 𝑡𝐷) = 0 

In this section, the method of Boltzmann transformation is employed to obtain the exact analytical solution of the 

above problem. 

3.1. Boltzmann’s Transformation 

In this section, the mathematical problem above is transformed into an ordinary differential equation that is easier 

to solve via Boltzmann transform. The Boltzmann transform variable is defined as; 

𝐸𝐷 = 𝑎𝑟𝐷
𝑏𝑡𝐷

𝑐                    12(a) 

Combining Equations 10 and 12(a), we have 

𝜕2𝑃𝐷

𝜕∈𝐷
2 + [

1

(𝜕∈𝐷 𝜕⁄ 𝑟𝐷)2

𝜕2∈𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷

1

(𝜕∈𝐷 𝜕𝑟𝐷⁄ )
−

1

𝐹(𝜕∈𝐷 𝜕𝑟𝐷⁄ )2

𝜕∈𝐷

𝜕𝑡𝐷
]

𝜕𝑝𝐷

𝜕∈𝐷
= 0               12(b) 

From Equation 12, we have: 

𝜕∈𝐷

𝜕𝑡𝐷
= 𝑎𝑟𝑏

𝐷
𝜕

𝜕𝑡𝐷
(𝑡𝐷

𝑐) = 𝑎𝑟𝑏
𝐷𝑡𝐷

𝑐 .
𝐶

𝑡𝐷
  

∴
𝜕∈𝐷

𝜕𝑟𝐷
=

𝐶

𝑡𝐷
∈𝐷                    13(a) 

𝜕∈𝐷

𝜕𝑟𝐷
=

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝑏). 𝑎𝑡𝐷
𝑐 = 𝑎𝑟𝐷

𝑏𝑡𝐷
𝑐 .

𝑏

𝑟𝐷
  

∴
𝜕∈𝐷

𝜕𝑟𝐷
=

𝑏

𝑟𝐷
∈𝐷                     13(b) 

𝜕2∈𝐷

𝜕𝑟𝐷
2 =

𝜕

𝜕𝑟𝐷
(𝑎𝑡𝐷

𝑐𝑏𝑟𝐷
𝑏−1) = 𝑎𝑡𝐷

𝑐 . 𝑏(𝑏 − 1)𝑟𝐷
𝑏−2  

𝜕2∈𝐷

𝜕𝑟𝐷
2 = 𝑎𝑟𝐷

𝑏𝑡𝐷
𝑐 𝑏(𝑏 − 1)𝑟𝐷

−2 =
𝑏(𝑏−1)

𝑟𝐷
2 ∈𝐷                              13(c) 

The multiplier term in Equation 12(b) is; 

1

(𝜕∈𝐷 𝜕𝑟𝐷)⁄ 2

𝜕2∈𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷(𝜕∈𝐷 𝜕𝑟𝐷)⁄
−

1

𝐹(𝜕∈𝐷 𝜕𝑟𝐷)⁄ 2

𝜕∈𝐷

𝜕𝑡𝐷
                 13(d) 

Substituting Equations 13(a) to 13(c) into 13(d), we have; 

 
1

(𝑏∈𝐷 𝑟𝐷)⁄ 2

𝑏(𝑏−1)

𝑟𝐷
2 ∈𝐷+

1

𝑟𝐷

1

𝑏∈𝐷 𝑟𝐷⁄
−

1

(𝑏∈𝐷 𝑟𝐷)⁄ 2

𝐶

𝐹𝑡𝐷
∈𝐷 

The above expression reduces to; 

𝑏−1

𝑏
.

1

∈𝐷
+

1

𝑏

1

∈𝐷
−

𝑐𝑟𝐷
2

𝐹𝑏2𝑡𝐷

1

∈𝐷
                    13(e) 

Considering the last term in the above equation, we have: 

−
𝑐𝑟𝐷

2

𝐹𝑏2𝑡𝐷
.

1

∈𝐷
= −

𝑐𝑟𝐷
2

𝐹𝑏2𝑡𝐷

1

𝑎𝑟𝐷
2𝑡𝐷

𝑐 = −
𝐶

𝐹

1

𝑎𝑏2

𝑟𝐷
2

𝑟𝐷
𝑏

𝑡𝐷
−1

𝑡𝐷
𝐶   



Journal of Human, Earth, and Future         Vol. 2, No. 3, September, 2021 

229 

An attempt will be made to determine the value of a, b and c by setting the entire term equal to 
1

𝐹
  , then eliminating 

the 𝑟𝐷 and 𝑡𝐷 terms by establishing the constant b and c systematically we have, 

𝑟𝐷
2

𝑟𝐷
𝑏 ≡ 1 𝑖𝑓 𝑏 = 2 𝑎𝑛𝑑  

𝑡𝐷
−1

𝑡𝐷
𝑐 ≡ 1 𝑖𝑓 𝑐 = −1  

Setting the entire term equal to 
1

𝐹
 we have  

  
𝑐

𝐹

1

𝑎𝑏2

𝑟𝐷
2

𝑟𝐷
𝑏 .

𝑡𝐷
−1

𝑡𝐷
𝑐 =

1

𝐹
   

Substituting  𝑏 = 2 and 𝑐 = −1, we obtain  

𝑎 =
1

4
 

The final form of Equation 13(e) is; 

2−1

2

1

∈𝐷
+

1

2

1

∈𝐷
+

1

𝐹
= [

1

∈𝐷
+

1

𝐹
]                   13(f) 

Substituting Equation 13(f) into 12(b), we have; 

 
𝜕2𝑃𝐷

𝜕∈𝐷
2 + [

1

𝐹
+

1

∈𝐷
]

𝜕𝑃𝐷

𝜕∈𝐷
= 0                      (14) 

where the following definitions apply: 

∈D= arD
btD

c   

𝑎 =
1

4
, 𝑏 = 2 𝑎𝑛𝑑 𝑐 = −1  

∈𝐷=
rD

2

4t𝐷
                        (15)  

Equation 14 is the “Boltzmann” transformed form of Equation 10 and Equation 15 is the defined “Boltzmann” 

variable. In a similar vein, the initial and boundary conditions are transformed as follows; 

𝑃𝐷 (𝑟𝐷 , 𝑡𝐷 ≤ 0) = 0)  

where for  𝑡𝐷 → 0; ∈𝐷→ ∞, which gives: 

𝑃𝐷(∈𝐷→ ∞) = 0                     16(a) 

𝑃𝐷 (𝑟𝐷 → ∞, 𝑡𝐷) = 0) 

𝑎𝑠 𝑟𝐷 → ∞; ∈𝐷→ ∞, 𝑤ℎ𝑖𝑐ℎ 𝑦𝑖𝑒𝑙𝑑𝑠 

𝑃𝐷(∈𝐷→ ∞) = 0                     16(b) 

It can be seen that Equations 16(a) and 16(b) above are the same, this confirms the validity of the Boltzmann 

transformation for this problem as the “collapsing” of the initial and outer boundary conditions must occur for the 

Boltzmann transform to be technically valid. Also, transforming the inner boundary condition, we have: 

[𝑟𝐷
𝜕∈𝐷

𝜕𝑟𝐷

𝜕𝑃𝐷

𝜕∈𝐷
]

𝑟𝐷→0
= [𝑟𝐷 (

1

𝑟𝐷
∈𝐷)

𝜕𝑃𝐷

𝜕∈𝐷
]

𝑟𝐷→0,   ∈𝐷→0 
= 2 [∈𝐷

𝜕𝑃𝐷

𝜕∈𝐷
]

∈𝐷→0
= −1  

∴ [∈𝐷
𝜕𝑃𝐷

𝜕∈𝐷
]

∈𝐷→0
= −

1

2
                    16(c) 

3.2. Solution of the Transformed Problem 

In the previous section, the following transformed form of the mathematical problem developed in section (2) was 

obtained; 

𝜕2𝑃𝐷

𝜕∈𝐷
2 + [

1

𝐹
+

1

∈𝐷
]

𝜕𝑃𝐷

𝜕∈𝐷
= 0                      (14) 

𝑃𝐷(∈𝐷→ ∞)                      16(a) 

[∈𝐷
𝜕𝑃𝐷

𝜕∈𝐷
] = −

1

2
                     16(c) 

In this section, a solution of the above problem is obtained as follows; 

Substituting 𝑉 =
𝝏𝑷𝑫

𝝏∈𝑫
 into Equation 14; we have; 

∂V

∂∈D
+ [

1

F
+

1

∈D
] V = 0  
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Solving the above equation, we have: 

∂v

∂∈D
= − [

1

F
+

1

∈D
] v  

∫
∂v

V
= − ∫ (

1

F
+

1

∈D
) ∂ ∈D  

In V = − ∫
1

F
d ∈D − ∫

1

∈D
d ∈D  

In V =
−∈D

F
−  𝑙𝑛 ∈D+ K   

V =
C

∈D
𝑒

−∈D
F                       (17) 

where K and C are constants,  

Substituting Equation 16(c) into Equation 17, we have: 

𝑑𝑃𝐷

𝑑∈𝐷
= −

1

2∈𝐷
𝑒

−∈D
F   

Integrating the above equation, we obtain the following results; 

𝐹
𝑑𝑃𝐷

𝑑∈𝐷
= −

1

2

F

∈𝐷
𝑒

−∈D
F   

𝐹 ∫ 𝑑𝑃𝐷 = −
1

2

𝑃𝐷

𝑃𝐷=0
  ∫   

F

∈𝐷
  𝑒

−∈D
F   

∈𝐷

∈𝐷=∞
𝑑 ∈𝐷   

Let 𝑦 =
∈D

F
 

𝐹 ∫ 𝑑𝑃𝐷 = −
F

2
  ∫   

1

𝑦

∞

𝑦=
rD

2

4Ft𝐷

𝑒−𝑦   𝑑𝑦
𝑃𝐷

𝑃𝐷=0
  

Therefore, we have; 

𝑃𝐷 (𝑟𝐷 , 𝑡𝐷) =
1

2
Ei (

rD
2

4Ft𝐷
)                      (18) 

where Ei(𝑥) = ∫
𝑒−𝑥

𝑥
𝑑𝑥

𝑥

∞
  

The Equation 18 describes the Forchheimer flow in porous media under unsteady-state condition. 

3.2.1. Logarithm Approximation  

Although Equation 18 obtained in the previous section looks very simple, the E𝒾 – function associated with it is 

computationally rigorous and requires numerical scheme.  Therefore, an approximated form of Equation 18 that is 

valid for large times and does not involve the E𝒾 – function is presented in this section. 

 When 
rD

2

4Ft𝐷
≤ 0.01, we obtain the following form of Equation 18; 

𝑃𝐷 (𝑟𝐷 , 𝑡𝐷) =
1

2
𝑙𝑛 (

1.781rD
2

4Ft𝐷
)                     (19) 

The Equation 19 is another form of Equation 18 that is valid for large times. 

Finally, substituting the expressions for 𝑝𝐷 , 𝑟𝐷 𝑎𝑛𝑑 𝑡𝐷 into Equation 18 and Equation 19, we obtain the following 

results; 

𝑃 = 𝑝𝒾 −
70.62

KFh
E𝒾 (

rD
2

4Ft𝐷
)                      (20) 

𝑃 = 𝑝𝒾 −
141.2𝑞𝜇𝐵

KFh
 𝑙𝑛 (

1.5√Ft𝐷

r𝐷
)                     (21) 

Equation 20 describes Forchheimer flow in porous media under unsteady-state condition and Equation 21 is it’s 

logarithm approximation. It is worthy to note that both Equation 20 and Equation 21 are presented in oilfield units. 

4. Results and Discussion 

After a rigorous mathematical analysis and modeling of Forchheimer flow in an infinite reservoir, the results 

obtained are summarized in mathematical form as follows; 

𝑃𝐷 (𝑟𝐷 , 𝑡𝐷) =
1

2
𝑙𝑛 (

1.781rD
2

4Ft𝐷
)                     (19) 

𝑃 = 𝑝𝒾 −
70.62

KFh
E𝒾 (

rD
2

4Ft𝐷
)                      (20) 
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 𝑃 = 𝑝𝒾 −
141.2𝑞𝜇𝐵

KFh
 𝑙𝑛 (

1.5√Ft𝐷

r𝐷
)                     (21) 

Equation 19 above is a mathematical relationship between dimensionless pressure (𝑃𝐷), dimensionless radius (rD), 
dimensionless time (t𝐷), and the forchheimer factor (F). the equation shows that an inverse relationship exist between 

the dimensionless pressure and the Forchheimer factor. The implication of this is that the dimensionless pressure 

increases as the Forchheimer factor decreases. The graph below shows the effect of the Forchheimer factor on the 

dimensionless pressure. 

 

Figure 2. Effect of the Forchheimer Factor on the Dimensionless Pressure 

Furthermore, Equations 20 and 21 show that the pressure drop in the reservoir has an inverse relationship with the 

Forchheimer factor. This implies that the pressure drop increases as the Forchheimer factor decreases. Below is the 

graphical representation of the relationship between pressure drop and the Forchheimer factor. 

 

Figure 3. Effect of the Forchheimer Factor on Pressure Drop in a Reservoir 
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5. Conclusion 

A rigorous mathematical analysis of Forchheimer flow in an infinite reservoir has been carried out and simplified 

mathematical relationships between the parameters involved have been obtained. The significance of this study cannot 

be overemphasized as the Forchheimer factor has a significant effect on the instantaneous production rate, reservoir 

pressure, reservoir production history, and the economic analysis of hydrocarbon reservoirs. From the results above, it 

is evident that an inverse relationship exists between pressure drop and the Forchheimer factor. This is a result that can 

be applied to maximize production from a reservoir. Since pressure is the primary energy of a reservoir, minimizing 

the rate of pressure decline will definitely extend the production life of a reservoir while also deferring the 

implementation of the secondary and tertiary recovery techniques, which are costly. The results above suggest that the 

rate of pressure decline can be minimized by keeping the Forchheimer factor as high as possible. This can be done by 

deploying some engineering techniques that can help to modify the magnitudes of the reservoir and fluid properties 

that control the magnitude of the Forchheimer factor. Finally, it is important to note that the mathematical results 

presented in this paper are only applicable to homogeneous and isotropic porous media. Therefore, a more rigorous 

mathematical adventure must be embarked on in order to obtain similar results for heterogeneous and anisotropic 

porous media. Furthermore, Equations 19 and 21 must be applied with caution as we must ensure that the conditions 

for their validity are fully satisfied. 

6. Nomenclature 

F  = Forchheimer factor Φ = Porosity 

𝜇  = Viscosity K = Permeability 

𝑃𝐷= Dimensionless pressure 𝑝𝒾 = Initial pressure  

P  = Pressure 𝑟𝐷 = Dimensionless radius 

𝑟𝑤 = Well radius  𝑡𝐷 = Dimensionless time 

t   = Time ∈𝐷 = Transformation variable 

q  = Flow rate B  = Formation volume factor 

𝑐𝑡  = Total compressibility 𝜌   = Density 

𝛽  = Forchheimer coefficient    
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