
 

 

 

 

 

 
 ISSN: 2785-2997  

Available online at www.HEFJournal.org  

Journal of  

Human, Earth, and Future 

Vol. 6, No. 3, September, 2025 

 

  

640 

Predicting Stress During Sleep from Biosensor Data:                             

An Optimized Machine Learning Framework 

 

Tran Anh Tuan 1, 2* , Dao Thi Thanh Loan 3  

1 School of Informatics, Walailak University, Nakhon Si Thammarat, 80160, Thailand. 

2 Informatics Innovation Center of Excellence (IICE), Walailak University, Nakhon Si Thammarat, 80160, Thailand. 

3 Department of Sciences, Dak Lak College of Pedagogy, Dak Lak, 63000, Vietnam. 

Received 09 June 2025; Revised 16 August 2025; Accepted 20 August 2025; Published 01 September 2025 

Abstract 

Objectives: This study aims to develop an optimized machine learning (ML) framework for predicting stress levels via 

physiological signals collected during sleep via Internet of Medical Things (IoMT)-enabled biosensors. The primary goal 

is to increase the accuracy and efficiency of stress prediction by identifying the most significant features that influence 

stress classification. Method/Analysis: The proposed framework employs two feature selection methods: particle swarm 

optimization combined with the whale optimization algorithm (PSO-WOA) and an enhanced version incorporating Lévy 

flight (PSO-WOA with Lévy flight). These methods are designed to reduce feature dimensionality while maximizing 

classification performance. A set of single (LR, KNN, NB, MLP, and SVM) and ensemble (RF, XGBoost, and Voting) 

classifiers are evaluated via 10-fold cross-validation. The Sleep-IoMT stress dataset, comprising biosensor-based 

physiological signals, was used for experimental validation. Findings: The framework achieved high classification 

accuracy across all the models, with all the classifiers exceeding 0.98 accuracy. Compared with the PSO-WOA, the PSO-

WOA with the Lévy flight method demonstrated superior performance in terms of both feature selection quality and 

training time efficiency. The results confirm that effective feature selection significantly improves model accuracy and 

interpretability. Novelty/Improvement: This research introduces a hybrid approach for feature selection (PSO-WOA) in 

the context of stress prediction from sleep-related IoMT data. The integration of Lévy flight into the PSO-WOA 

enhances exploration capabilities and reduces premature convergence, offering a robust solution for real-world 

healthcare applications, e.g., mobile stress monitoring and early intervention systems.  

Keywords: Stress Prediction; Feature Selection; PSO-WOA; PSO-WOA with Lévy Flight; Machine Learning; Single Classifiers; 

Ensemble Classifiers; Sleeping Monitor. 

 

1. Introduction 

Stress has emerged as a major contributor to mental and physical health problems worldwide [1]. Chronic stress is 

linked to various conditions (e.g., anxiety, depression, cardiovascular diseases, and weakened immunity) [2-4]. 

Among the many physiological effects of stress, its influence on sleep patterns is particularly profound. Sleep 

disturbances, e.g., fragmented sleep, rapid limb movement, irregular respiration, or heart rate variability, are often 

early indicators of psychological strain [5-7]. 

Recent advances in wearable sensors and the Internet of Medical Things (IoMT) have enabled continuous and 

nonintrusive monitoring of sleep-related physiological parameters. These smart medical devices provide valuable real-
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time data streams, capturing key features such as the respiration rate, heart rate, eye movement, body temperature, and 

blood oxygen saturation [8, 9]. By leveraging these health-specific data, machine learning (ML) techniques can be 

employed to develop predictive models with clinical relevance, particularly in assessing and forecasting stress levels. 

A variety of ML methods have been explored for this purpose: Ciabattoni et al. [10] employed K-Nearest Neighbors 

(KNN), Nath et al. [11] used Random Forest (RF), Wu et al. [12] applied Logistic Regression (LR), and Rachakonda 

et al. [13] implemented a Deep Neural Network. Kumar et al. [14] used KNN with feature importance, while Anitha 

[15] developed a stacking ensemble model. Other approaches include Support Vector Machine (SVM) by Wahab et al. 

[16], Naive Bayes (NB) by Jayawickrama & Rupasingha [17], Multilayer Perceptron (MLP) by Rachakonda et al. 

[18], and RF by Shruthika & Rasheedha [19].  

The integration of IoMT with ML represents a promising approach for personalized health monitoring and 

early intervention in stress-related conditions. However, raw sensor data are high-dimensional, noisy, and often 

redundant [20, 21]. Thus, feature selection plays a critical role in identifying the most informative attributes that 

contribute to stress classification. For instance, mutual information, ANOVA, and correlation-based approaches 

have been applied in stress detection tasks. Additionally, other methods such as nature-inspired metaheuristics, 

Boruta, and genetic algorithms have been explored in broader healthcare contexts, including HIV diagnosis, 

human resource prediction, depression detection using EEG data, biosensor signal analysis, and image-based 

grading tasks [22-28]. These traditional algorithms may struggle with local optima or overfitting when handling 

such complex datasets.  

To address this, this study proposes a robust ML-based framework for stress prediction using sleep-related 

physiological data. The framework incorporates two feature selection methods: (1) a hybrid Particle Swarm 

Optimization-Whale Optimization Algorithm (PSO-WOA) and (2) its enhanced variant, the PSO-WOA with Lévy 

flight. These optimization techniques aim to identify the most informative subset of features that contribute to stress 

classification, thereby enhancing model accuracy and generalizability. The selected features are then used to train and 

test multiple classifiers, including both single (e.g., LR, KNN, NB, MLP, and SVM) and ensemble models (e.g., RF, 

Extreme Gradient Boosting: XGBoost, and a Voting Classifier). To ensure robustness and fairness in model 

evaluation, a 10-fold cross-validation strategy is employed during training, while key default hyperparameters are used 

for each classifier to maintain consistency and reproducibility. The performance of the proposed framework is 

assessed via standard evaluation metrics, including accuracy, precision, recall (sensitivity), F1-score, and specificity to 

capture different aspects of classification quality. Additionally, comparisons between the two feature selection 

approaches are conducted to determine their relative effectiveness in enhancing classifier performance. This study has 

the following contributions: 1) introduce an optimized machine-learning framework for stress prediction because of 

sleep-related physiological data collected through IoMT devices; and 2) propose intelligent optimization techniques 

for feature selection by introducing two hybrid metaheuristic algorithms. 

The structure of this paper is as follows: Section 2 introduces the research methodology, including data collection, 

feature selection, and model evaluation. Section 3 presents experimental results, while Section 4 discusses key 

findings, limitations, and future research directions. Finally, Section 5 concludes the study with insights into the 

practical applications of the proposed approach. 

2. Research Methodology 

2.1. Data Collection 

The dataset used in this study, referred to as the Sleep-IoMT stress dataset (630 samples and 8 columns), was 

obtained from Rachakonda et al. [18] and was derived from an IoMT-enabled device specifically designed to 

collect physiological signals associated with stress during sleep. This device captured a range of features 

considered relevant for stress prediction, including “Snoring Range” (SR), “Respiration Rate” (RR), “Body 

Temperature” (T), “Limb Movement rate” (LM), “Blood Oxygen level” (BO), “Eye movement during REM sleep” 

(REM), “number of hours of sleep” (SH), and “Heart Rate” (HR). The target variable, “Stress Level” (SL), was 

categorized into five classes: 0 - “Normal”, 1 - “Medium low”, 2 - “Medium”, 3 - “Medium high”, and 4 - “High”. 

These features were chosen for their clinical significance in assessing stress and serve as the foundation for the ML 

models developed in this research. 

2.2. The Proposed Method 

Figure 1 depicts the ML-based framework for stress prediction from the sleep-IoMT stress dataset, which includes 

physiological signals associated with stress during sleep. The framework has four significant phases, including (1) 

data preprocessing and splitting, (2) feature selection for the training phase, (3) feature identification for testing 

phase, and (4) classification. The input and output of the framework are the sleep-IoMT stress dataset and five stress 

levels (five classes), respectively.  
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Figure 1. A framework based on ML for stress prediction from sleep-IoMT stress dataset 

2.2.1. Data Pre-processing and Splitting 

In the preprocessing stage, missing values within the dataset are addressed via mean imputation to ensure data 

completeness. To ensure uniformity in feature scaling, “MinMaxScaler” [29] is applied to normalize all feature values 

into the range of 0 - 1. Although the target values are numerical, label encoding was applied if categorical formats 

were present. The dataset is then divided into 70% for training and 30% for testing to allow for unbiased model 

evaluation.  

2.2.2. Feature Selection for the Training Phase 

To detect the most relevant physiological features for stress prediction, this study proposes two feature selection 

methods during the training phase: (1) particle swarm optimization combined with the whale optimization algorithm 

(PSO-WOA) method and (2) its enhanced variant, PSO-WOA with Lévy flight. The objective is to optimize feature 

subsets by maximizing classification performance while reducing feature dimensionality. 

The PSO-WOA combines the social behavior of PSO, which mimics the movement of a swarm toward the best-

known positions, with the exploitation strategy of the WOA, which simulates bubble-net hunting by humpback 

whales. This hybridization allows the algorithm to effectively balance global exploration and local exploitation. 

However, standard PSO-WOA may still suffer from premature convergence in complex search spaces. To address 

this, the Lévy flight was integrated into the PSO-WOA. Lévy flight employs stochastic long-distance jumps to escape 

local minima and explore a broader range of the search space [30-35]. For both methods, the fitness function is defined 

via the classification performance of a RF model evaluated via 10-fold cross-validation. Each candidate feature subset 

is represented as a binary vector, where 1 indicates the inclusion of a feature and 0 indicates exclusion. The subset of 

features with the highest average accuracy across 10-fold was selected for the subsequent classification phase. 

Processing steps to optimize feature subset by the PSO-WOA and PSO-WOA with Lévy flight methods are depicted 

in Figure 2. 
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   Input:  Normalized training dataset with all features 

   Output: FP optimal feature subset obtained via the PSO-WOA method 

       FL optimal feature subset obtained via the PSO-WOA with the Lévy flight method      

1. Initialize population of candidate solutions (binary vectors representing feature subsets) 

2. For each candidate in the population: 

   a. Select features indicated by the binary vector 

   b. The RF classifier is trained via 10-fold cross-validation 

   c. Compute the classification accuracy as the fitness score 

3. Update particle positions via PSO (velocity and position updates) 

4. Apply the WOA encircling prey mechanism to refine the search 

5. Lévy flight mutation is applied to introduce random long jumps (with a defined 

probability) to increase search diversity 

6. Repeat steps until a predefined number of iterations or convergence for the following 

options 

 a. Steps 2 - 4 for the PSO-WOA method  

 b. Steps 2 - 5 for the PSO-WOA with Lévy flight method 

7. Return the optimal feature subsets FP and FL with the highest fitness score  

Figure 2. Optimized feature subsets by the PSO-WOA and the PSO-WOA with Lévy flight methods 

Figure 2 illustrates the processing steps of the two optimization approaches: the PSO-WOA and the PSO-WOA 

with Lévy flight. In Step 1, a population of candidate solutions is initialized, where each individual is encoded as a 

binary vector representing a unique subset of features from the normalized training dataset. In Step 2 of Figure 2, for 

each candidate in the population, the selected features (indicated by binary values) are extracted. The RF classifier is 

then trained via 10-fold cross-validation, and the resulting classification accuracy is computed as the fitness score. 

Step 3 involves updating the particles’ velocities and positions via the PSO algorithm, guiding the search toward 

promising regions in the feature space. In Step 4, the WOA is applied to refine the search by simulating the encircling 

prey behavior, which improves local exploitation. For the PSO-WOA with the Lévy flight approach, Step 5 introduces 

an additional mutation phase via Lévy flight with a predefined probability. This step introduces random long-distance 

jumps to increase the search diversity and mitigate the risk of premature convergence. These steps are repeated in Step 

6 for a set number of iterations or until convergence is achieved. Specifically, Steps 2 to 4 are executed for the PSO-

WOA method, whereas Steps 2 to 5 are followed for the PSO-WOA with the Lévy flight approach. Finally, in Step 7, 

the feature subsets that yield the highest classification accuracy, denoted as FP (for the PSO-WOA) and FL (for the 

PSO-WOA with Lévy flight), are selected as the optimal subsets. 

2.2.3. Features Identification for the Testing Phase 

In the testing phase, the feature subset identified during training is applied to the testing data to maintain 

consistency and avoid data leakage. Only the features selected by the PSO-WOA or the PSO-WOA with the Lévy 

flight methods are used for classification. The testing dataset is filtered to retain only these selected features, which 

were previously determined to have the most significant impact on model performance. The results of this phase are 

then used for stress prediction in the subsequent classification phase.  

2.2.4. Classification Algorithms 

In this study, two types of ML models are commonly used to predict stress from sleep data (single and ensemble 

ML classifiers). Single ML classifiers use a single, standalone model to perform classification or prediction tasks. 

In contrast, ensemble ML classifiers combine the predictions of multiple models to improve overall performance. 

Single and ensemble ML classifiers have been deployed in various domains including the health domain [36]. In this 

study, we employ LR, KNN, NB, MLP, and SVM as single classifiers. For the ensemble classifiers, we use RF, 

XGBoost, and voting classifier. These classifiers are deployed with key hyperparameters by SK-learn in Python [29, 

37, 38]. The key hyperparameters of these classifiers are depicted in Table 1. 
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Table 1. Key hyperparameters for single and ensemble classifiers 

Type Classifier Key Hyperparameters 

S
in

g
le

 

LR solver= ‘lbfgs’, C=1.0 

KNN n_neighbors=5, metric= ‘minkowski’, weights= ‘uniform’ 

NB GaussianNB with learned class priors 

MLP hidden_layer_sizes=(100), activation= ‘relu’, solver= ‘adam’ 

SVM kernel= ‘rbf’, C=1.0, gamma= ‘scale’ 

E
n

se
m

b
le

 

RF n_estimators=100, criterion= ‘gini’, bootstrap=True, max_features= ‘sqrt’ 

XGBoost n_estimators=100, learning_rate=0.1, max_depth=3 

Voting classifier Soft voting combining LR, RF, and XGBoost 

2.2.5. Model Evaluation 

To provide comprehensive model evaluation, popular measurement metrics (accuracy, precision, sensitivity 

(recall), F1-scores, and specificity) in various prediction problems [9, 39-41]. 

Accuracy = 𝑇𝑃 + 𝑇𝑁/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)  (1) 

Precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (2) 

Sensitivity (Recall) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (3) 

F1 − score = (2 × P × R)/(P + R)  (4) 

Specificity = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)  (5) 

where TP (true positive): the predicted value is positive and its positive. FP (false positive): the predicted value is 

positive and its negative. TN (true negative): the predicted value is negative and its negative. FN (false negative): the 

predicted value is negative but its positive. 

3. Results 

3.1. Characteristics of the Dataset  

Among the 630 samples distributed across five stress levels, each level represented 126 samples (20.0%). The 

characteristics of the dataset at each stress level are summarized in Table 2. 

Table 2. Descriptive characteristics of the dataset. The breakdown of the total sample size is based on stress levels 

Characteristics All (n=630) 

Stress levels 

H-statistic Normal 

(n=126) 

Medium low 

(n=126) 

Medium 

(n=126) 

Medium high 

(n=126) 

High 

(n=126) 

SR       603.83*** 

median [IQR] 
70.0 

[52.5-91.25] 

47.5 

[46.25-48.75] 

55.0 

[52.5-57.5] 

70.0 

[65.0-75.0] 

87.5 

[83.75-91.25] 

98.0 

[97.0-99.0] 
 

RR       603.83*** 

median [IQR] 
21.0 

[18.5-25.0] 

17.0 

[16.5-17.5] 

19.0 

[18.5-19.5] 

21.0 

[20.5-21.5] 

24.0 

[23.0-25.0] 

28.0 

[27.0-29.0] 
 

T       603.83*** 

median [IQR] 
93.0 

[90.5-93.5] 

97.5 

[96.75-98.25] 

95.0 

[94.5-95.5] 

93.0 

[92.5-93.5] 

91.0 

[90.5-91.5] 

87.5 

[86.25-88.75] 
 

LM       603.83*** 

median [IQR] 
11.0 

[8.5-15.75] 

6.0 

[5.0-7.0] 

9.0 

[8.5-9.5] 

11.0 

[10.5-11.5] 

14.5 

[13.25-15.75] 

18.0 

[17.5-18.5] 
 

BO       603.83*** 

median [IQR] 
91.0 

[88.25-94.25] 

96.0 

[95.5-96.5] 

93.5 

[92.75-94.25] 

91.0 

[90.5-91.5] 

89.0 

[88.5-89.5] 

85.0 

[83.5-86.5] 
 

REM       603.83*** 

median [IQR] 
90.0 

[81.25-98.75] 
70.0 

[65.0-75.0] 
82.5 

[81.25-83.75] 
90.0 

[87.5-92.5] 
97.5 

[96.25-98.75] 
102.5 

[101.25-103.75] 
 

SH       608.34*** 

median [IQR] 
3.5 

[0.5-6.5] 

8.0 

[7.5-8.5] 

6.0 

[5.5-6.5] 

3.5 

[2.75-4.25] 

1.0 

[0.5-1.5] 

0.0 

[0.0-0.0] 
 

HR       603.83*** 

median [IQR] 
62.5 

[56.25-72.5] 

52.5 

[51.25-53.75] 

57.5 

[56.25-58.75] 

62.5 

[61.25-63.75] 

70.0 

[67.5-72.5] 

80.0 

[77.5-82.5] 
 

Note: *: p < .005; **: p < .001; ***: p < .0001 
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The results revealed clear physiological distinctions among the different stress levels. The SRs increased steadily 

from a median of 47.5 [IQR: 46.25–48.75] in the normal group to 98.0 [97.0–99.0] in the high-stress group. Similarly, 

the RR increased from 17.0 [16.5–17.5] in the normal group to 28.0 [27.0–29.0] in the high-stress group, and the HR 

increased from 52.5 [51.25–53.75] to 80.0 [77.5–82.5]. In contrast, T decreased from 97.5 [96.75–98.25] to 87.5 

[86.25–88.75], and SH decreased sharply from 8.0 [7.5–8.5] in the normal group to 0.0 [0.0–0.0] in the high-stress 

group Additionally, results from the Kruskal–Wallis H-test (H-statistic) revealed statistically significant differences 

across stress levels for all variables, H (4) ≥ 603.83, p <0.001 all variables (Table 2).  

To develop the stress prediction model, eight physiological features - SR, RR, T, LM, BO, REM, SH, and HR - 

were standardized. Each feature comprised 630 observations, with normalized values ranging from 0.0 to 1.0. Among 

these, REM exhibited the highest median importance (0.67 with IQR [0.47–0.86]), followed by BO (0.60 [0.43–0.82]) 

and T (0.57 [0.39–0.75]). In contrast, HR and RR had relatively lower median importance values (both at 0.36 [0.18–

0.64]). The distributions also showed moderate dispersion, with standard deviations ranging from 0.252 for T to 0.352 

for SR, suggesting variability in feature contributions across iterations or subjects (Figure 3-a). Among the eight 

features, SR, RR, LM, REM, and HR steadily increased from normal to high stress levels (normalized means from 

0.05 to 0.96). In contrast, T, BO, and SH declined, indicating stress-related disruptions in homeostasis and rest (Figure 

3-b). 

 

(a) Normalized values across eight features 

 

(b) Mean normalized values across five stress levels 

Figure 3. Distribution of normalized values for features 
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3.2. Feature Subset Optimization 

In this study, feature subset optimization was performed via two methods: the PSO-WOA and the PSO-WOA with 

the Lévy flight. Each method aims to identify the most relevant physiological features from sleep-related sensor data 

for accurate stress level prediction. The resulting subsets differed in size and composition, reflecting the influence of 

the optimization strategy on feature selection. The PSO-WOA algorithm selects a total of six features: RR, T, BO, 

REM, SH, and HR. In contrast, the PSO-WOA algorithm augmented with Lévy flight produced a more compact subset 

of only four features: RR, T, SH, and HR. The consistent selection of RR, T, SH, and HR across both methods suggests 

that these features hold significant predictive value for stress classification. 

For the PSO-WOA method, the correlation analysis among RR, T, BO, REM, SH, and HR reveals several strong 

relationships. RR and HR are perfectly correlated (r = 1.000), indicating potential redundancy. T and BO are also 

highly correlated (r = 0.998), whereas RR is strongly negatively correlated with both (r = -0.889). REM sleep 

positively correlates with RR and HR (r ≈ 0.936), whereas SH sleep strongly positively correlates with T and BO (r ≈ 

0.95), suggesting stable physiological conditions with longer sleep. Notably, REM and SH are strongly negatively 

correlated (r = -0.894), possibly reflecting disrupted sleep patterns under stress. These findings highlight interrelated 

physiological responses and suggest possible data overlap (Figure 4-a) 

 

(a) PSO-WOA 

 

(b) PSO-WOA with Lévy flight 

Figure 4. Heap maps among optimized features by PSO-WOA and PSO-WOA with Lévy flight 

For the PSO-WOA with the Lévy flight method, the correlation analysis among RR, T, SH, and HR reveals strong 

interrelationships. RR and HR are perfectly correlated (r = 1.000), indicating a tight physiological link or data 

redundancy. Both RR and HR are strongly negatively correlated with T and SH (r ≈ -0.889 to -0.892), suggesting that 

increased respiratory and heart rates are associated with lower body temperature and reduced sleep. In contrast, T and 

SH are strongly positively correlated (r = 0.955), indicating that higher temperatures align with longer sleep durations. 

These patterns suggest that elevated stress responses coincide with disrupted sleep and thermoregulation (Figure 4-b). 
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3.3. Model Performance 

A comprehensive evaluation of model performance was conducted via multiple metrics, including accuracy, 

precision, recall, F1-score, specificity, and training time. The experimental results are described in Table 3.  

Table 3. A comparison of single and ensemble ML models based on the PSO-WOA and PSO-WOA with Lévy flight 

Feature selection methods 

(Type of ML models) 
ML model Accuracy Precision 

Recall 

(Sensitivity) 
F1-score Specificity 

Consuming time 

for training (s) 

P
S

O
-W

O
A

 -
b

as
ed

 

(S
in

g
le

) 

LR 1.000 1.000 1.000 1.000 1.000 0.01420 

KNN 1.000 1.000 1.000 1.000 1.000 0.02313 

NB 1.000 1.000 1.000 1.000 1.000 0.00321 

MLP 1.000 1.000 1.000 1.000 1.000 0.65171 

SVM 1.000 1.000 1.000 1.000 1.000 0.01714 

P
S

O
-W

O
A

 -

b
as

ed
 

(E
n

se
m

b
le

) RF 0.995 0.995 0.994 0.995 0.999 0.20514 

XGBoost 0.984 0.984 0.984 0.984 0.996 0.16946 

Voting classifier 0.989 0.989 0.989 0.989 0.997 0.90654 

P
S

O
-W

O
A

 w
it

h
 L

év
y
 

fl
ig

h
t-

b
as

ed
 

(S
in

g
le

) 

LR 1.000 1.000 1.000 1.000 1.000 0.01651 

KNN 1.000 1.000 1.000 1.000 1.000 0.01992 

NB 1.000 1.000 1.000 1.000 1.000 0.00269 

MLP 1.000 1.000 1.000 1.000 1.000 0.60563 

SVM 1.000 1.000 1.000 1.000 1.000 0.01448 

P
S

O
-W

O
A

 

w
it

h
 L

év
y

 

fl
ig

h
t-

b
as

ed
 

(E
n

se
m

b
le

) RF 0.995 0.995 0.994 0.995 0.999 0.19425 

XGBoost 0.984 0.984 0.984 0.984 0.996 0.10946 

Voting classifier 0.989 0.989 0.989 0.989 0.997 0.50908 

The experimental results demonstrated the exceptional performance of both the PSO-WOA and the PSO-WOA 

with Lévy flight optimization methods across a variety of ML classifiers. All single classifiers (LR, KNN, NB, 

MLP, and SVM) achieved perfect performance scores under both optimization approaches. These classifiers yielded 

accuracies, precisions, recalls, F1 score, and specificities of 1.000, indicating that the models were able to classify 

the stress levels of all the instances correctly. This level of performance signifies a perfect balance between false 

positives and false negatives and reflects the high generalizability of the optimized feature selection methods. In 

terms of computational efficiency, NB was the fastest classifier, requiring less than 0.003s for training under both 

the PSO-WOA and its Lévy-enhanced variant.  

On the other hand, the MLP was the slowest among the single classifiers, with training times exceeding 0.6 

seconds. Interestingly, the training time for the MLP and other models was slightly reduced under the PSO-WOA 

with the Lévy fligh variant, suggesting that the Lévy mechanism enhances the search process during optimization 

and reduces computational complexity. The Wilcoxon signed-rank test was employed to make comparisons between 

the two groups (the performance of PSO-WOA and PSO-WOA with Lévy flight feature selection methods) in terms 

of accuracy and runtime. From the test, no statistically significant difference in accuracy between the two 

approaches (p = 1.0), indicating comparable classification performance. However, a statistically significant 

difference in runtime was observed (p = 0.023), and the PSO-WOA with the Lévy flight method demonstrated 

improved computational efficiency. These results indicate that while both methods are equally effective in terms of 

prediction accuracy, the incorporation of Lévy flight offers a practical advantage by reducing execution time.  

Across both SHAP plots Figure 5, SH consistently emerges as the most critical feature affecting model output. 

High SH values increase prediction in Figure 5a, while low SH values do so in Figure 5b, indicating a possible 

nonlinear relationship or different modeling contexts. HR and RR are also consistently impactful, with lower 

values contributing more to predictions in both plots. T shows minimal influence throughout. Overall, the model 

appears highly sensitive to variations in sleep and physiological signals, especially when they deviate from normal 

ranges. 
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(a) SHAP for PSO-WOA 

 

(b) SHAP for PSO-WOA with Lévy flight 

Figure 5. SHAP for PSO-WOA and PSO-WOA with Lévy flight 

Ensemble models, including RF, XGBoost, and voting classifiers, also performed exceptionally well, achieving 

high accuracy (≥ 0.984) with slightly longer training durations cross two feature selection methods (the PSO-WOA 

and the PSO-WOA with Lévy flight). RF achieved the highest accuracy among ensembles at 0.995, with strong 

sensitivity (recall of 0.994) and near-perfect specificity (0.999). XGBoost achieved with 0.984 accuracy and excellent 

balanced metrics, whereas the voting classifier achieved an accuracy of 0.989. Notably, the ensemble models took 

longer to train than the single classifiers did, particularly the voting classifier, which required over 0.9 seconds under 

the PSO-WOA, though the training time decreased to approximately 0.5 seconds with the addition of Lévy flight (see 

Table 3 and Figure 6). 

The results in Table 4 compare between our proposed method and other methods for stress prediction via 

various sensors, ML models, the number of extracted features, and the number of stress levels. Previous studies 

[10-12, 42, 43] have used fewer sensors (one to three sensors) such as GSR, respiration rate, body temperature, 

and HRV. These studies focused mainly on binary classification (two stress levels) and achieved accuracies 

ranging from 0.830 - 0.970. The models applied included KNN, SVM, and RF, demonstrating reasonable 

performance with a few extracted features. Subsequent studies by Jayawickrama & Rupasingha [17], and 

Shruthika & Rasheedha [19] expanded the sensor set to seven or eight physiological signals, covering limb 

movement, snoring range, body temperature, respiration rate, REM period, and others. Although the 

classification tasks became more complex (predicting up to five stress levels), these studies still maintained high 

accuracies, approximately 0.913-0.950. 



Journal of Human, Earth, and Future         Vol. 6, No. 3, September, 2025 

649 

 

Figure 6. Comparison of performance among ML models based on feature selection methods 

Table 4. A comparison of our proposed method with other methods  

Author(s) 
No.  

sensors 
Sensors 

ML model  

(best performance) 

No. extracted  

features 

No. Stress 

levels 
Accuracy 

Lawanot et al. [42] 2 Images, surveys SVM 12 2 0.830 

Ciabattonie et al. [10] 3 GSR, RR, BT KNN 10 2 0.845 

Jayawickrama et al. [17] 7 
Limb movement, snoring range, body temperature, respiration 

rate, eye movement, blood oxygen level, heart rate 
NB 7 2 0.913 

Nath et al. [11] 2 GSR, PPG RF 5 2 0.920 

Shruthika & Rasheedha 

[19] 
8 

Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 
RF 8 5 0.950 

Rachakonda et al. [18] * 8 
Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 
MLP 8 5 0.960 

Wu et al. [12] 1 HRV, salivary cortisol, Stress Response Inventory scores LR N/A 2 0.970 

Rachakonda et al. [13] 3 Body temperature, steps taken, humidity DNN 3 3 0.983 

Wahab et al. [16] * 8 
Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 
SVM 8 5 0.994 

Kumar et al. [14]* 8 
Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 
KNN 8 5 1.000 

Anitha [15]* 8 
Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 

Stacking ensemble 

model 
8 5 1.000 

Our proposed method* 8 
Heart rate, respiration rate, blood oxygen range, REM period, 

limb movement, body temperature, snoring range, sleep duration 
NB 4 5 1.000 

Note: Studies * conducted the same dataset. 

The studies with an asterisk (*) in Table 4 used a consistent set of eight sleep-related physiological features (the 
same dataset) [14-16, 18]. All studies achieved accuracies ≥ 0.960. Among these five studies, our proposed method 
and the other two studies achieved accuracies of 1.000 with the NB, KNN, and the stacking ensemble models. 

However, our proposed method distinguished itself by reducing the number of extracted features from eight to four 
through feature selection. This demonstrates the effectiveness of optimal feature selection and lightweight models in 
achieving efficient and highly accurate stress prediction. 

4. Discussion 

This study proposed an optimized ML framework for predicting stress levels via sleep-related biosensor data. By 

integrating signals such as the respiratory rate (RR), heart rate (HR), REM sleep patterns, and body temperature with 
advanced feature selection and classification algorithms, the framework demonstrated a high degree of accuracy in 
predicting stress. The methodology highlights the importance of combining physiological signals with intelligent 

optimization techniques to increase the reliability and effectiveness of ML models in health-related applications. 
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Physiological features such as RR, HR, sleep hours (SH), and temperature (T) were strongly associated with stress 
levels. Notably, RR and HR were strongly correlated, suggesting a tight physiological coupling under stress. In 
addition, features such as REM sleep and blood oxygen (BO) also emerged as important contributors, reflecting the 

physiological disruptions that typically accompany elevated stress (see Figure 3 and Table 2). These findings are 
consistent with prior research linking autonomic nervous system activity, sleep quality, and metabolic changes to 

stress responses [40, 44, 45]. 

A key innovation in this research is the use of a hybrid PSO-WOA algorithm, which is further improved by 
incorporating the Lévy flight strategy. These enhancements significantly expand the search space diversity and 
mitigated the risk of becoming trapped in local optima. As a result, the proposed methods achieve superior feature 

selection by identifying the most relevant input attributes without sacrificing classification accuracy (≥ 0.996 all). This 
aligns with previous studies that mentioned the important role of feature selection methods [22, 46-48].  

The proposed methods of feature selection revealed that SH, HR, and RR were consistently ranked as the most 

influential variables across models. This importance aligns with known biomarkers of psychological and physiological 
stress, indicating the model’s ability to capture meaningful health patterns. This finding is consistent with recent 
studies that have linked stress factors [49-51].  

In the context of evaluating model performance, this study emphasizes that relying solely on accuracy is 
insufficient, especially in multiclass biomedical prediction tasks (stress levels). Various metrics, e.g., sensitivity (true 
positive rate) and specificity (true negative rate), are particularly critical. High sensitivity ensures that individuals 

experiencing stress are correctly identified, which is vital for timely intervention and mental health support. On the 
other hand, high specificity helps reduce false alarms, avoiding unnecessary interventions or miscommunication. 
Additional metrics such as the F1-score further contribute to a well-rounded evaluation, offering insights into the 

model’s balance between precision and recall across classes.  

Despite these promising results, there are several limitations in this study. First, the dataset used in this study was 

balanced and was collected under standardized conditions, ensuring consistent measurements but potentially limiting 
generalizability to real-world environments. Second, individual factors such as age, sex, lifestyle, or medical history 
were not incorporated into the model, potentially affecting the interpretation of physiological responses. 

5. Conclusion 

This study proposed an optimized ML framework for predicting stress levels via physiological signals derived from 

sleep-related biosensor data. By leveraging advanced feature selection methods (the PSO-WOA and the PSO-WOA 

with the Lévy flight), the framework effectively identified the most influential features while maintaining high 

classification accuracy across various ML models (> 0.98 for all single and ensemble classifiers). The experimental 

results revealed the effective role of the feature selection method in enhancing model performance. The PSO-WOA 

with the Lévy flight method outperformed the PSO-WOA method in terms of training time efficiency. In addition, the 

proposed framework achieves better results than other methods do, validating its robustness and potential 

applicability. Key physiological indicators (SH, HR, and RR) highlighted by SHAP to confirm their clinical relevance 

in stress detection. These insights not only enhance model transparency but also offer valuable guidance for healthcare 

professionals in understanding and monitoring stress-related conditions. In the future, we aim to expand the dataset, 

incorporate additional behavioral parameters, and deploy the framework in real-world applications (e.g., mobile health 

monitoring systems) for stress management and early intervention. 
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