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Abstract

Exposure to airborne nickel (Ni) and cobalt (Co) poses significant non-carcinogenic health risks, particularly with
chronic inhalation. This study quantifies the health risks associated with Ni and Co exposure using a Monte Carlo
simulation to incorporate variability and uncertainty in exposure assessment. Air samples were analyzed to determine
metal concentrations, and risk characterization was performed through the calculation of Hazard Quotient (HQ) and
Target Hazard Quotient (THQ) values based on United States Environmental Protection Agency (USEPA) guidelines.
The probabilistic analysis revealed that the mean HQ and THQ values for both Ni and Co exceeded the safe threshold
(HQ > 1, THQ > 1), indicating a high probability of health risks across the population, especially among adults.
Sensitivity analyses identified inhalation rate, exposure duration, and exposure frequency as the most influential factors,
while body weight, average exposure time, and reference concentration (RfC) served as mitigating variables. The results
highlight a significant potential for non-carcinogenic effects from Ni and Co inhalation, emphasizing the need for
stringent air quality management and targeted public health interventions. This study demonstrates the importance of
applying probabilistic risk assessment models to better understand and manage environmental health hazards.
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1. Introduction

Nickel (Ni) and cobalt (Co) are essential metals that are widely used in various industrial sectors, such as
manufacturing, mining, energy production, and the chemical industry [1]. Global demand for these two metals
continues to increase in line with their strategic role in the manufacture of stainless steel, electric vehicle batteries, and
high-performance metal alloys [2]. This increased demand has driven massive mining and refining activities for nickel
and cobalt in various countries, including Indonesia, which has significant nickel reserves.
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However, despite their benefits, exposure to Ni and Co, even at low concentrations, can pose serious health risks to
humans. Low-level Ni exposure can irritate the respiratory tract, cause mild bronchitis, and, over the long term,
increase the risk of chronic lung disorders such as fibrosis and lung cancer [3]. Additionally, Ni is known as a strong
allergen that can trigger contact dermatitis and affect immune system responses [4]. Meanwhile, Co exposure is
associated with respiratory system disorders, reduced lung function, pulmonary fibrosis, and potential carcinogenic
effects [5, 6]. Epidemiological evidence suggests that long-term Co exposure can increase the incidence of certain
types of cancer, including colon cancer [7].

The primary route of exposure to these heavy metals for communities near mines is through inhalation of airborne
particles. Particles containing Ni and Co can disperse into the atmosphere, be inhaled, and then be deposited in lung
tissue and other organs, potentially causing chronic health effects [8]. Therefore, health risk analysis is crucial to
determine the extent to which heavy metal exposure affects communities near mining areas [9]. Human health risk
assessment is a systematic process to estimate the nature and likelihood of adverse health effects on humans exposed
to environmental contaminants, both currently and in the future [10].

However, the reliability of health risk estimates depends heavily on the quality and completeness of exposure data.
In practice, airborne heavy metal concentration data often exhibit high variability and uncertainty due to differences in
emission sources, meteorological conditions, and limitations in monitoring coverage [11]. To address this challenge,
the Monte Carlo Simulation (MCS) method has emerged as an effective approach for incorporating uncertainty and
variability into risk analysis. By simulating thousands of exposure scenarios, MCS can generate probabilistic estimates
that provide a more comprehensive picture of health risks [12-14].

Recent research indicates that MCS can enhance the quality of health risk assessments. For example, Sakan et al.
[15] applied MCS to assess health risks from exposure to volatile organic compounds in the footwear industry,
demonstrating its effectiveness in quantifying uncertainty and determining confidence intervals for hazard indices and
cancer risk. Similarly, Paul et al. [16] used MCS to assess exposure to respirable dust in welding processes,
reinforcing the effectiveness of this method in supporting occupational health interventions. In Iran, MCS has been
applied to analyze the risks of mercury exposure in small-scale gold mining areas, revealing significant health impacts
on miners and surrounding communities [17].

However, the use of MCS in assessing health risks from Ni and Co exposure in the air in mining areas remains
limited, particularly in Indonesia [18]. Previous studies in Indonesia have generally focused on other heavy metals
such as mercury, lead, or arsenic, and have more frequently examined exposure pathways through water and soil
rather than air [19, 20]. Additionally, few studies have specifically combined MCS with sensitivity analysis to identify
dominant factors influencing risk variability in nickel and cobalt mining areas [21, 22].

Based on Figure 1 this finding is supported by bibliometric mapping results, which show that the keywords “health
risk,” “air pollution,” “mercury,” and ‘lead’ form a large, closely interconnected cluster, while the keywords “nickel,”
“cobalt,” and “Monte Carlo methods” appear as small nodes separated from the main cluster. This indicates that the
application of Monte Carlo-based probabilistic approaches in assessing health risks from exposure to nickel and cobalt
in the air has not been widely developed. Therefore, this study aims to address this gap by integrating laboratory
measurements of air quality, probabilistic estimates based on Monte Carlo simulations, and sensitivity analysis to
identify dominant factors, thereby providing a more comprehensive and evidence-based understanding of public health
risks around nickel mining areas.
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Figure 1. (a) Network Visualization and (b) Overlay Visualization of keyword co-occurrence in studies on Nickel, Cobalt,
health risks, Monte Carlo Simulation, and Air
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2. Materials and Methods
2.1. Area of Study

Sorowako is one of the areas in East Luwu Regency, South Sulawesi Province, Indonesia, with an area of
approximately 808.27 km?. This area has a tropical climate with an average annual rainfall of 258 mm, and the number
of rainy days reaches approximately 216 days per year. The average air temperature ranges from 22-30°C, with
relative humidity reaching 62-96%. One of the main geographical features of Sorowako is the presence of Lake
Matano, the deepest freshwater lake in Southeast Asia [23]. This sub-district includes several villages and sub-
districts, such as Sorowako Village, Nikkel Village, Magani Village, Nuha Village, and Matano Village. In addition,
Sorowako is known as a center for mining industry activities, especially Ni, which is the main economic sector of this
region [24]. This research focused on Sorowako Village, Nikkel Village, and Magani Village, which are the main
locations for nickel mining activities (Figure 2).
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Figure 2. Sampling locations and research areas
2.2. Study Design

This research is grounded in the risk assessment framework as outlined by the U.S. Environmental Protection
Agency (USEPA), which consists of four key components: hazard identification, dose-response assessment, exposure
assessment, and risk characterization. Specifically, the study employs a probabilistic approach using Monte Carlo
simulation (MCS) to estimate non-carcinogenic health risks arising from inhalation exposure to airborne nickel and
cobalt [25]. The theoretical basis for using Monte Carlo simulation lies in its capacity to model the inherent
uncertainty and variability in environmental exposure parameters such as inhalation rate, exposure duration, and
concentration levels by treating them as probability distributions rather than fixed values. This probabilistic modeling
approach is rooted in quantitative risk assessment theory, which emphasizes the importance of characterizing the full
range and likelihood of possible health outcomes rather than relying solely on point estimates [26].

The estimation of health risk uses the Hazard Quotient (HQ) and Target Hazard Quotient (THQ) models, which
compare the estimated exposure dose to established reference doses (RfD). When HQ or THQ values exceed 1, they
indicate potential for adverse health effects. In this study, MCS is used to analyze potential risks in depth by
evaluating the impact of uncertain variables and identifying possible different outcomes. This simulation will be run
with the help of Oracle Crystal Ball software version 11.1.2 as an add-in in Microsoft Excel 2018. By integrating
Monte Carlo simulation into these calculations, the research provides a more comprehensive and realistic
characterization of risk, aligning with the theory of environmental health risk modeling that advocates probabilistic
frameworks for more informed decision-making under uncertainty [27].
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Figure 3. A Flowchart Study

2.3. Sampling Technique

Air sampling was conducted at six points spread across Sorowako Village, Nikkel Village, and Magani Sub-
district, with the following distribution: four points in Sorowako Village, one point in Nikkel Village, and one point in
Magani Sub-district. Each air sample measured included five respondents living in the area of the measurement point.
Air sampling was conducted using a High-Volume Air Sampler (HVAS) to capture suspended particles. Air samples
were collected for 24 hours in stable weather conditions to avoid variations due to rain or atmospheric changes,
National Standardization Agency. Furthermore, it was analyzed using the Atomic Absorption Spectrometry (AAS)
method in a laboratory that has met the SNI 7119-4:2017 standard.

The population of this study included residents domiciled in Sorowako Village, Nikkel Village, and Magani
Village, located within a radius of 4-5 km from the mining area. Inclusion Criteria in this study are: Aged 3660
years, have lived in the research location for > 5 years, have no history of work in the mining/heavy metal industry (to
avoid bias due to direct exposure in the workplace). Exclusion Criteria: Sufferers of chronic kidney or liver disease
(because these organs play a role in heavy metal metabolism), Individuals with a history of work in the mining
industry sector for more than 1 year (to distinguish environmental exposure from occupational exposure. The total
sample obtained was 294 respondents, with details of 99 respondents from Sorowako Village, 98 respondents from
Nikkel Village, and 97 respondents from Magani Village. Blood sampling was carried out by purposive sampling from
individuals at each location to ensure representation of the population at risk of exposure to heavy metals Ni and Co.

The selection of 5 respondents per air sampling point was based on logistical constraints, ethical considerations,
and the design of the exposure assessment framework, which focused on representing a range of demographic
characteristics (e.g., age, body weight, activity level) within each microenvironmental setting. Our primary aim was to
integrate site-specific air quality data with individual-level exposure scenarios, rather than to conduct large-scale
epidemiological surveys. The health risk assessment relied primarily on environmental concentration data, which were
then combined with individual exposure factors through Monte Carlo simulations to generate a robust probabilistic
distribution of risk across the population. This modeling approach compensates for the limited number of respondents
by simulating thousands of possible exposure scenarios, thereby enhancing statistical validity and generalizability.

Data in this study were collected through a questionnaire to obtain information related to demographic
characteristics, health history, environmental exposure, and behaviors and habits that affect exposure to heavy metals
Ni and Co. Demographic information includes age, gender, and occupation, while health history includes diseases or
symptoms related to heavy metal exposure. Environmental exposure includes location of residence, distance from
pollution sources, and duration of residence, while behavior includes habits such as smoking and consumption of
potentially contaminated water.
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2.4. Data Analysis

Airborne concentrations of nickel (Ni) and cobalt (Co) were collected from multiple sampling sites surrounding the
Sorowako nickel mining area, utilizing high-volume air samplers to capture representative exposure scenarios. Metal
concentrations were quantified using inductively coupled plasma mass spectrometry (ICP-MS) and subsequently
analyzed to estimate the non-carcinogenic health risks [28, 29]. The exposure assessment incorporated key variables
such as inhalation rate, exposure time, exposure frequency, duration, body weight, and reference concentrations,
following United States Environmental Protection Agency (USEPA) guidelines [30].

Hazard Quotient (HQ) is used as a general non-carcinogenic risk metric that compares the estimated exposure
concentration to a reference concentration (RfC) derived from chronic inhalation toxicity data. It is calculated as the
ratio of the average daily intake of a contaminant to its corresponding RfC. HQ values above 1 indicate potential non-
carcinogenic health risks. Target Hazard Quotient (THQ), originally developed by the U.S. EPA for assessing health
risks from trace elements in food, is conceptually similar to HQ but incorporates specific exposure parameters (e.g.,
body weight, exposure frequency, duration, and averaging time) in a more detailed and structured manner. In this
study, THQ is adapted for inhalation exposure to quantify the individual element-specific risk contribution, enabling a
refined probabilistic interpretation when combined with Monte Carlo simulations.

A Monte Carlo simulation with 10,000 iterations was employed to model the probabilistic distribution of Hazard
Quotient (HQ) and Target Hazard Quotient (THQ) values, capturing variability and uncertainty in the risk parameters
[31]. We selected 10,000 iterations for the Monte Carlo simulation based on established practices in environmental
health risk assessment literature, where this number is commonly used to ensure a balance between computational
efficiency and result stability. Several published studies (e.g., USEPA risk assessments and peer-reviewed
environmental exposure analyses) have demonstrated that 10,000 iterations generally provide sufficient sampling of
parameter distributions to produce stable and representative output distributions for health risk metrics such as HQ and
THQ [32]. Toxicological parameters, including Reference Dose (RfD) for Ni and Co, were obtained from the US-EPA
Integrated Risk Information System (IRIS) database. Non-carcinogenic health risks were calculated using the Hazard
Quotient (HQ) and target hazard quotient (THQ) approaches, which are the comparison between Chronic Daily Intake
(CDI) and RfD. CDI is calculated based on heavy metal concentration, inhalation rate or ingestion rate, exposure
frequency, exposure duration, body weight, and average exposure time, by US-EPA guidelines. The basic formula
used is [33];

CDI_CXIRXEFXED
- WB x AT

(1

where, CDI is Chronic Daily Intake (ug/m*/day); IR is Inhalation rate; EF is Frequency of Exposure (Day/year); Dt is
Duration of Exposure (Year); C is Concentration (mg/kg); and WB is Body Weight (kg).

CDI

HQ = — 2)

RfD
where, HQ is Hazard quotient (ug/m3/day); and RfD is Reference of Dose (ug/m®/day).

fEXDtxRxC

THQ = —DXRXC
RfDXWBXAT

1073 3)
where, THQ is Target Hazard Quotient (ug/m’/day); {E is Frequency of Exposure (Day/year); Dt is Duration of
Exposure (Year); R is Inhalation Rate (kg/hour); C is Concentration (mg/kg); RfD is References of Dose (mg/kg); WB
is Body Weight (kg); and AT is Time Average (Day/year).

The simulation results demonstrated that both Ni and Co exhibited mean HQ and THQ values significantly
exceeding the threshold value of 1, indicating considerable health risks for the exposed population, especially among
sensitive subgroups such as adults. Sensitivity analysis revealed that inhalation rate, exposure duration, and exposure
frequency were the most influential factors contributing to risk, while higher body weight, longer averaging time, and
higher reference concentration values acted as mitigating elements [34]. The findings highlighted the importance of
targeted air quality interventions around the mining area to reduce exposure levels. Additionally, the application of
probabilistic modeling through Monte Carlo simulation proved effective in providing a comprehensive and realistic
estimation of health risks under environmental uncertainty conditions [35].

Sensitivity analysis was conducted to identify the input parameters that contributed most to the variation in HQ
results. The Ranked Pearson Correlation Coefficient (PCC) and Standardized Regression Coefficient (SRC) methods
were used to evaluate sensitivity, with the results visualized in the form of tornado diagrams. Through this analysis,
parameters such as heavy metal concentration, ingestion rate, and body weight were identified as dominant factors
influencing risk. In addition, statistical tests were conducted to support the data analysis. The Shapiro-Wilk normality
test was used to determine the distribution of the data the results of the analysis are presented with 95% confidence
intervals, both for HQ, THQ values and Monte Carlo simulation results, to increase the reliability of the interpretation
of the research results.
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3. Results

Based on Table 1, the sociodemographic characteristics of the respondents in this study provide an overview of the
population living around the mining area. Most respondents are in the 41-50 age range, which dominates in almost all
locations (40—51.5%). Meanwhile, the proportion of respondents over the age of 51 is lower, ranging from 13% to
33%, reflecting a relatively good distribution of productive ages among the population.

In terms of gender, women are more dominant in some locations, particularly at Site I (80%) and Site IV (58.3%),
while men are more numerous in other locations, such as Site V (59.2%) and Site VI (52.6%). These differences likely
reflect the division of roles in household activities, the environment, and formal and informal work in each area.

All respondents had a minimum education level of high school/vocational school (ranging from 55.7% to 88%),
indicating fairly good access to education. A small proportion of respondents had pursued higher education, with
bachelor's degree holders accounting for 12.4% at Site VI, although no respondents held master's degrees. This
suggests that the majority of respondents have sufficient educational backgrounds to understand environmental and
basic health issues.

Regarding length of residence, respondents at all locations had lived in the area for a considerable period, with
most reporting over 20 years of residence. This relatively long duration of residence indicates a high level of
cumulative exposure to environmental conditions, including emissions from mining activities.

The distance from homes to mining sites is divided into two ranges, 4.00—4.79 km and 4.80-5.63 km, depending
on the location, with respondents at each site consistently falling within these distance ranges.

For drinking water sources, most respondents used bottled water, particularly at Site VI (68.0%) and Site II (92%),
while others still relied on the Regional Water Supply Company (PDAM) (60—60.2%). No respondents reported using
dug wells, boreholes, rivers, or lakes as drinking water sources. Meanwhile, for bathing purposes, all respondents
(100%) at all locations rely on PDAM, indicating relatively good access to clean water across the entire study area.

Table 1. Sociodemographic characteristics of respondents (n=294) based on sampling location

Total / Site Percentage (%) / Site
Variable Category
| I I v A% ! 1 I U1 v A\ VI
3540 8 5 7 8 39 32 20 28 333 398 402
Age (Years) 41-50 15 12 8 50 40 60 48 333 50 515
>51 7 5 6 8 10 8 28 20 24 333 102 8.2
Male 5 15 12 10 58 49 20 60 48 417 592 505
Gender

Female 10 13 14 40 48 80 40 52 583 40.8 495
Junior High School 1 3 4 2 25 24 4 12 16 8.3 255 247
Senior High School 15 16 20 60 54 88 60 64 833 612 557

Education Diploma 0 0 0 0 7 4 0 0 0 0 7.1 4.1
Bachelor's Degree 1 5 4 2 6 12 4 20 16 8.3 6.1 124

Master's Degree 1 2 1 0 0 3 4 8 4 0 0 3.1
Formal 1 4 5 8 33 36 4 16 20 333 337 37.1
Work Informal 4 10 12 6 49 24 16 40 48 25 50 247
Housewife 11 8 10 16 37 80 44 32 417 163 38.1

Drinking Water Local water company 2 3 4 59 31 60 8 12 16.7 60.2 32
Source Refill water 23 22 20 39 66 40 23 22 20 39 66
Bathing Water Local water company 25 25 24 98 97 100 100 100 100 100 100

Source Refill water 0 0 0 0 0 0 0 0 0 0 0 0

Based on Table 2, Ni concentrations ranged from 0.0439 pg/m? to 0.3889 pug/m?, with an average of 0.1396 pg/m?>.
Meanwhile, cobalt (Co) concentrations range from 0.0002 pg/m?® to 0.0007 pg/m?, with an average of 0.000383 pg/m?.
The highest concentrations for both metals were detected at Site V, while the lowest concentrations were recorded at
Site I. According to the World Health Organization (WHO), the recommended annual average limit for nickel in
ambient air is 0.0025 pg/m?, primarily based on carcinogenic risk considerations. The US Environmental Protection
Agency (USEPA) has also established a reference concentration (RfC) for chronic inhalation exposure to nickel
compounds of 0.02 pg/m?. In this study, nickel concentrations at all locations significantly exceeded WHO guidelines,
with Location V recording the highest exceedance at 0.3889 pg/m?3, nearly 155 times the WHO recommended limit.
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Although cobalt concentrations were much lower (ranging from 0.0002 to 0.0007 pg/m?), there are no official
WHO air quality standards for cobalt. However, based on toxicological evidence, cobalt concentrations in air above
0.0001 mg/m*® (100 ng/m®) may pose respiratory risks. The cobalt levels recorded in this study remain below this
threshold. These findings highlight that nickel exposure is a more critical health concern in the Sorowako region,
suggesting the need for local mitigation efforts to reduce nickel levels in the air.

Table 2. Ni and Co concentrations in the air based on sampling location

Site Concentration (ng/m?) Tem%era ture Humidity Coordinate Point
Ni Co () (%) Latitude Longitude
1 0.1182 0.0004 337 564 2°31°38” 121°21°44>
I 0.0752 0.0004 315 61.8 2°32°0” 121°21°51”
11 0.0785 0.0003 334 554 2031’34 121°23°12”
v 0.0439 0.0002 315 554 2031’44 121°22°58”
\Y 0.3889 0.0007 336 50.6 2031’43 121°21°31”
VI 0.1330 0.0003 322 509 2031’18 121°21°29”

Based on Figure 4 shows that the probabilistic distribution of the Hazard Quotient (HQ) for nickel in these
respondents shows that the average HQ value is > 1, which is above the safe limit according to the reference
concentration (RfC). Most of the simulation values are above HQ > 1, with the 10th percentile being 8 and the 90th
percentile being 16, indicating that 90% of the population has a very high risk, while the other 5% has a high risk. This
log-normal distribution shows significant variability due to factors such as nickel concentration, exposure patterns, and
individual weight. The average value is above the safe limit; individuals with HQ above 1 have the potential for non-
carcinogenic health risks, especially in chronic exposure.
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Figure 4. Probabilistic distribution of nickel hazard quotient (HQ)

Based on Figure 5 shows how much each factor affects the level of health risk due to cobalt exposure in
respondents. The most influential factor is the duration of exposure in years (ED) at 13.7%, followed by the nickel
concentration factor in the air (C) at 12.5%, then followed by the amount of nickel inhaled (Inhalation Rate) at 12.3%,
then the frequency of exposure (EF) at 12.1% and the length of exposure time per day (ET) at 11.9%. However, other
factors such as the average exposure time (AT) factor showed a negative effect of -13.0%, followed by the reference
of concentration (RfC) factor at -12.6% and the body weight (BW) factor at -11.9%. The three negative factors
indicate that the higher the average exposure time (AT), reference concentration (RfC), and body weight (BW), the
smaller the health risk due to cobalt exposure. This is because the greater average exposure time (AT), reference of
concentration (RfC), and body weight (BW) cause the dose of nickel entering humans per kilogram to be smaller, so
that its impact on health decreases. The negative effects of the average exposure time (AT), reference of concentration
(RfC), and body weight (BW) are natural mitigation factors that help reduce the level of risk.
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Figure 5. Nickel sensitivity hazard quotient (HQ)

Based on Figure 6 shows that the probabilistic distribution of the Target Hazard Quotient (THQ) for nickel in these
respondents shows that the average THQ value is > 1, which exceeds the safe limit according to the reference
concentration (RfC). Most of the simulated values are above THQ > 1, with the Sth percentile being 7.68 and the 95th
percentile being 19.52, indicating that 95% of the population has high risk, while the other 5% has moderate risk. This
log-normal distribution shows significant variability due to factors such as nickel concentration, exposure patterns, and
individual weight. Although the average value is above the safe limit, individuals with THQ > 1 have potential non-
carcinogenic health risks, especially in chronic exposure.
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Figure 6. Probabilistic target hazard quotient (THQ) Nickel

Based on Figure 7 shows how much each factor affects the level of health risk due to nickel exposure in
respondents. The most influential factor is the frequency of exposure in daily/year (EF) factor of 15.0%, followed by
the duration of exposure in years (ED) factor of 14.3%, then the nickel concentration factor in the air (C) factor of
12.5%, then the duration of exposure per day (ET) factor of 10.1% and the inhaled nickel concentration factor
(Inhalation Rate) of 10.0%. However, other factors show a negative influence, such as the reference of concentration
(RfC) factor of -14.2%, followed by the body weight factor (BW) of -13.5% and the average exposure time factor
(AT) of -10.4%. The three factors that have a negative influence indicate that the higher the reference of concentration
(RfC), body weight (BW), and average exposure time (AT), the smaller the health risk due to nickel exposure. This
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happens because the larger reference concentration (RfC), body weight (BW), and average exposure time (AT) cause
the dose of nickel entering humans per kilogram to be smaller, so that its impact on health decreases. The negative
influence of reference concentration (RfC), body weight (BW), and average exposure time (AT) is a natural mitigation
factor that helps reduce the level of risk.
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Figure 7. Nickel sensitivity hazard quotient (HQ)

Based on Figure 8 shows that the probabilistic distribution of the Hazard Quotient (HQ) for cobalt in these
respondents shows that the average HQ value is > 1, which is above the safe limit according to the reference
concentration (RfC). Most of the simulation values are above HQ > 1, with the 5th percentile being 7 and the 95th
percentile being 18, indicating that 95% of the population has a very high risk, while the other 5% has a high risk. This
log-normal distribution shows significant variability due to factors such as cobalt concentration, exposure patterns, and
individual weight. The average value is above the safe limit; individuals with HQ above 1 have the potential for non-
carcinogenic health risks, especially in chronic exposure.
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Figure 8. Cobalt hazard quotient (HQ) probability
Based on Figure 9 shows how much each factor affects the level of health risk due to cobalt exposure in

respondents. The most influential factor is the amount of cobalt inhaled (Inhalation Rate) at 14.7%, followed by the
length of exposure time per day (ET) at 13.5%, then the duration of exposure in years (ED) at 13.0%, the frequency of
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exposure (EF) at 10.3% and the cobalt concentration factor in the air (C) at 9.9%. However, the reference
concentration (RfC) factor showed a negative effect of -15.9%, followed by the body weight (BW) factor at -13.1%
and the average exposure time (AT) factor at 9.6%. The three factors that had a negative effect indicate that the higher
the reference of concentration (RfC), body weight (BW), and average exposure time (AT), the smaller the health risk
due to cobalt exposure. This is because the larger reference concentration (RfC), body weight (BW), and average
exposure time (AT) cause the dose of cobalt that enters per kilogram to humans to be smaller, so that its impact on
health decreases. The negative effects of the reference of consentation (RfC), body weight (BW), and average
exposure time (AT) are natural mitigation factors that help reduce the level of risk.

Contribution to Variance View
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Figure 9. Sensitivity hazard quotient (HQ) Cobalt

Based on Figure 10 shows that the probabilistic distribution of the Target Hazard Quotient (THQ) for cobalt in
these adults shows that the average THQ value is > 1, which exceeds the safe limit according to the reference of
concentration (RfC). Most of the simulated values are above THQ > 1, with the 5th percentile being 3.51 and the 95th
percentile being 9.05, indicating that 95% of the population is high, while the other 5% is at moderate risk. This log-
normal distribution shows significant variability due to factors such as cobalt concentration, exposure patterns, and
individual weight. Although the average value is above the safe limit, individuals with THQ > 1 have potential non-
carcinogenic health risks, especially in chronic exposure.
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Figure 10. Probabilistic distribution of the Cobalt target hazard quotient (THQ)
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Based on Figure 11 shows how much each factor affects the level of health risk due to cobalt exposure in
respondents. The most influential factors are the length of exposure time per day (ET) factor of 14.6%, the duration of
exposure in years (ED) factor of 13.7%, followed by the cobalt concentration factor in the air (C) factor of 12.5%, then
followed by the amount of cobalt inhaled (Inhalation Rate) factor of 12.3%, then the frequency of exposure factor (EF)
of 12.1% and the length of exposure time per day (ET) factor of 11.9%. However, other factors such as the average
exposure time factor (AT) showed a negative effect of -13.0%, followed by the reference of concentration (RfC) factor
of -12.6% and the body weight factor (BW) of -11.9%. The three factors that have a negative influence indicate that
the higher the average exposure time (AT), reference of concentration (RfC), and body weight (BW), the smaller the
health risk due to cobalt exposure. This occurs because the greater average exposure time (AT), reference of
concentration (RfC), and body weight (BW) cause the dose of nickel that enters humans per kilogram to be smaller, so
that its impact on health decreases. The negative influence of the average exposure time (AT), reference of
concentration (RfC), and body weight (BW) is a natural mitigation factor that helps reduce the level of risk.

Contribution to Variance View
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Figure 11. Cobalt sensitivity hazard quotient (HQ)

4. Results

Intensive nickel mining activities in Indonesia, especially with open pit mining systems, produce emissions of
heavy metal particles such as nickel (Ni) and cobalt (Co) that are spread into the environment [36]. Residential areas
within the contamination radius are the main locations for atmospheric deposition of these metals. Accumulation of
heavy metals through the air can have direct implications for public health through inhalation [37]. Assessment of
health risks due to exposure to heavy metals such as nickel and cobalt is a central issue in environmental toxicology
studies. The probabilistic approach through the Hazard Quotient (HQ) and Target Hazard Quotient (THQ) provides a
quantitative picture of the potential non-carcinogenic risks that arise in exposed populations [38]. This study found
that the HQ and THQ values for both metals were above the safe threshold value (HQ/THQ> 1), indicating a
significant health risk.

Cobalt HQ showed a log-normal distribution with a mean value > 1 and a range between the 5th and 95th
percentiles ranging from 7 to 18. This indicates that a large portion of the population has exposure that has the
potential to cause long-term health impacts. A study by Soltanpour et al. [39] confirmed that chronic cobalt exposure
can affect the respiratory and cardiovascular systems. Sensitivity analysis showed that the inhalation factor (Inhalation
Rate) was the most significant component affecting the HQ value, followed by the duration and frequency of
exposure. This is in line with the USEPA model, which emphasizes the importance of exposure parameters in risk
assessment [1].

A based study by Zhao et al. [7] focused on airborne cobalt exposure in communities surrounding battery recycling
sites and reported a similarly elevated risk, particularly among informal workers and adults. Their findings confirmed
that Co exposure results in HQ values well above the acceptable threshold, further supporting the conclusions of our
study. Notably, their sensitivity analysis revealed exposure duration and frequency as the most influential variables,
coinciding with our own identification of inhalation rate, exposure frequency, and duration as key risk drivers.
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On the other hand, mitigating factors such as Reference Concentration (RfC), body weight (BW), and average
exposure time (AT) showed a negative effect on the HQ value. The higher these values, the lower the health risk due
to the lower dose distribution per kilogram of body weight. In nickel, the HQ distribution pattern is also log-normal,
with values between the 10th and 90th percentiles ranging from 8 to 16. This indicates a high risk experienced by
more than 90% of the exposed population, a result consistent with the findings of Sirinara et al. [40] regarding the
systemic toxicity of nickel. In the nickel HQ simulation, exposure duration (ED) was the dominant factor (13.7%),
followed by nickel concentration in the air (C, 12.5%), inhalation rate (12.3%), and exposure frequency (12.1%).
Similar to cobalt, mitigating factors such as AT, RfC, and BW reduced the risk by reducing the dose per kilogram of
body weight.

The HQ sensitivity analysis for nickel shows the dominance of annual exposure duration and nickel concentration
in the air as the main determinants. These values indicate that the duration and intensity of exposure greatly influence
the increase in risk. Cobalt also shows potential risk in adults based on the THQ analysis, where the average value is >
1 with a range of 5th to 95th percentiles ranging from 3.51 to 9.05. Adults are physiologically more vulnerable
because they have higher outdoor activities [4, 5]. The sensitivity analysis for cobalt THQ in adults shows that the
duration of daily and annual exposure times contributes the most to risk. This shows the importance of controlling
exposure time in adults in the context of mitigation. Nickel THQ also shows worrying results, with 95% of the
population showing values above the safe threshold, indicating a high health risk, especially for vulnerable groups
such as adults and the elderly.

For nickel THQ, the greatest sensitivity came from exposure frequency and air concentration, suggesting that
controlling emission sources could be an effective measure to reduce risk. The distribution of THQ for nickel had a
similar pattern, with the Sth percentile value being 7.68 and the 95th percentile being 19.52. These values are very
high, indicating that even at the lowest simulation, adults are still at risk well beyond the safe threshold. The
toxicological mechanisms of cobalt involve enzyme inhibition and the production of reactive oxygen species (ROS),
which can cause chronic cell and tissue damage [41]. Nickel is known to cause contact dermatitis and is immunotoxic,
in addition to having cumulative effects in the pulmonary system, especially with long-term exposure [23, 24].

A study by Zhang et al. [26] in urban-industrial regions of China, which applied a probabilistic risk assessment
framework, also identified Ni as a key contributor to non-carcinogenic health risks, particularly through PM2.5-bound
particles. Although their study did not include cobalt, their findings parallel those of the current research,
demonstrating HQ values of Ni > 1 and emphasizing the vulnerability of adults due to higher inhalation rates and
exposure sensitivity.

This study uses the Monte Carlo simulation method to estimate the variability and uncertainty in risk parameters,
according to international standards in quantitative risk assessment [34, 35]. High HQ and THQ values require serious
attention, especially in areas with intensive mining or metal industry activities. Environmental regulations should be
strengthened with an evidence-based approach like this. Policy recommendations can include controlling heavy metal
emission sources, using personal protective equipment (PPE) for industrial workers, and educating the public about
the potential dangers of heavy metals [27].

The study conducted in Morowali by Tunggala et al. [8] is very relevant, where they analyzed the environmental
impacts caused by mining activities. The findings indicate that these activities imply the risk of hazardous materials
being produced. Therefore, Monte Carlo simulation can be an effective tool in calculating the risks and impacts on
local biota and the quality of life of the surrounding community. The results of the simulation will provide decision
makers with the data needed to formulate better environmental protection [42, 43].

The main uncertainties in the simulation come from fluctuations in metal concentrations in the air, variations in
exposure time per individual, and uneven local body weight data. However, by using a probabilistic distribution, the
Monte Carlo approach can accommodate this variability and provide more robust estimates. Unlike deterministic
approaches, Monte Carlo simulations provide information about the risk range (rather than just a single number), and
allow for the calculation of percentiles (e.g., populations with HQ > 1). This is very important in public health
planning and evidence-based policy making [44].

With the finding that most of the HQ and THQ simulations showed values > 1, it can be concluded that settlements
around the mine are in a high-risk zone. This supports the need for buffer zone policies, limited relocation, or
increased air filtration systems in vulnerable settlements. Mitigation strategies can be directed at the most sensitive
factors, such as reducing air concentrations (through dust control), reducing the duration and frequency of exposure,
and educating the community about safe times to do outdoor activities. Planting protective vegetation can also reduce
direct exposure [35].

Further corroboration is provided by Hao et al. [45], who conducted a risk assessment in mining-impacted
communities and evaluated multiple metalloids, including Ni and Co. They reported HQ and THQ values above 1 for
both metals, and their results emphasized adults' greater vulnerability due to physiological and behavioral factors. Like
our study, they utilized a Monte Carlo-based approach to accommodate exposure uncertainty and identified inhalation
rate, body weight, and reference concentration (RfC) as dominant contributors to risk variability.
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This study also opens up opportunities for the development of Al-based predictive models and spatial data for risk
mapping in various geographic locations and different populations. In addition, longitudinal research is needed to
observe the real impact of heavy metal exposure on public health over a longer period [46]. This study contributes to
the global framework on environmental health, particularly in meeting the Sustainable Development Goals (SDGs),
especially in the aspects of clean water, clean air, and protection from hazardous chemicals [41]. The application of
quantitative methods in this study strengthens scientific arguments in determining exposure limits and formulating
local and international regulations. With the increasing understanding of the risks of heavy metal exposure,
multidisciplinary collaboration between toxicologists, epidemiologists, and public policy experts is important in
formulating integrated responses to environmental health challenges [30].

5. Conclusion

This study offers a detailed probabilistic estimation of non-carcinogenic health risks resulting from airborne nickel
and cobalt exposure in the Sorowako nickel mining area. Utilizing a Monte Carlo simulation, the analysis
demonstrated that the average Hazard Quotient (HQ) and Target Hazard Quotient (THQ) for both metals exceeded the
safety threshold of 1, signaling a potentially significant health risk to the local population. Adults were identified as
particularly vulnerable due to their higher inhalation rates relative to body weight. Sensitivity analysis pinpointed
inhalation rate, exposure duration, and exposure frequency as the dominant parameters driving risk levels, indicating
these pathways should be prioritized in mitigation strategies. These results emphasize the importance of improving
environmental oversight and implementing stricter emission controls in mining areas to reduce airborne metal
pollutants and protect public health.

Furthermore, the study underscores the utility of Monte Carlo simulation in health risk assessments, particularly in
accounting for variability and uncertainty in exposure parameters. By providing a probabilistic framework, the
approach enhances the reliability of risk estimates and supports more informed decision-making. The findings
advocate for the inclusion of such advanced methodologies in environmental health assessments, especially in
industrial regions with complex pollutant profiles. To build upon this research, future studies should consider
assessing carcinogenic risks and cumulative effects from multiple contaminants, which would offer a more holistic
understanding of long-term health implications and inform comprehensive regulatory policies.
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