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Abstract 

Cement is the main component of concrete and one of the most significant contributors to carbon emissions. Reducing 

cement use can significantly reduce global carbon emissions. This study aims to create an optimal concrete mixture of 

cost and minimal carbon emissions, but the compressive strength meets the requirements. XGBoost Machine Learning 

Algorithm is used to make predictions, and PSO is used to obtain the optimal mixture. The novelty of this study is the 

presence of concrete age variables, determination of PSO parameter weights using stakeholder preference analysis of 

construction in Indonesia with the AHP method, and validation of the PSO-recommended mixture using laboratory tests, 

which is still rarely done. The research findings indicate that the ML model provides satisfactory prediction values with 

an R2 value of 0.9043, root mean square error of 48.5147 and mean absolute percentage error of 0.0484. PSO results 

show that cement reduction in concrete can be achieved with optimal use of admixture while reducing 1-3% costs and 7-

10% carbon emissions. The research findings provide critical insights into the importance of using innovative techniques 

to optimize sustainable concrete mixes, accelerating the market implementation of products with cost benefits. 

Keywords: Concrete; Machine Learning; Strength Prediction; Carbon Reduction; Cost Reduction. 

 

1. Introduction 

The consequences of global warming have been witnessed in numerous regions of the country in Southeast Asia, 

such as extreme heat, high air pollution, etc. Many efforts have been undertaken to reduce carbon emissions to 

mitigate global warming, and construction is no exception. Globally, 30% to 40% of greenhouse gas (GHG) emissions 

were caused by construction projects [1]. Concrete is the primary construction material used in the construction 

industry, and over 50% of structural materials used worldwide are still made of concrete [2]. Roughly 5% to 7% of the 

carbon emissions originate from cement manufacture, predominantly used in concrete materials [3]. Cement, the main 

component of concrete, contributes the most to carbon emissions per ton, with an approximate value of 0.9 tons of 

CO2/ton of concrete). Therefore, it is essential to investigate the possibilities of reducing cement in concrete while 

maintaining compressive strength [4, 5]. 
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Previous studies have extensively focused on replacing 100% cement in concrete and introducing novel concretes 

like geopolymer concrete, an alternative to ordinary Portland Cement Concrete (OPC) [6]. However, issues on the 

workability and economic value of geopolymer concrete still exist, limiting its broad usage within the construction 

industry; often, the price of these geopolymers can be up to twice as high [7]. Despite a projected 44.64% GHG 

reduction compared to OPC concrete, an optimization-based study conducted in Melbourne utilizing fly ash 

geopolymer concrete showed reductions of GHG emissions and production costs could be in the range of 3.63%–

41.57% and 23.80%–30.25% respectively [8]. 

A different approach to reduce the requirement for cement and optimize the mix design is to create a low-carbon 

composition by optimizing various additional components such as concrete admixture [9]. Optimization refers to 

minimizing or maximizing a function within a specified set of feasible alternatives in a specific context. The tool 

facilitates the comparison of different alternatives to select the most suitable option. Artificial intelligence (AI) 

technology is among the many methods available for optimization. However, optimization using manual computations 

is challenging when more extensive data sets are associated. AI is a popular option for performing complex modeling 

tasks that include large amounts of data that are challenging to accomplish through manual computations. AI enables 

the rapid generation of multiple iterations with high computational precision. Machine learning (ML) algorithms can 

accurately forecast the compressive strength of cement-based materials with high accuracy and learning capacity [10, 

11]. A study revealed that applying machine learning in mix design optimization could lead to a 10% decrease in 

cement consumption, resulting in a corresponding 10% reduction in carbon emissions [12]. Another study utilized the 

combination of gradient boosting (GB) and particle swarm optimization (PSO) to execute multi-objective optimization 

on geopolymer concrete mix designs, which resulted in a production cost efficiency improvement that varied from 

7.6% to 27%, as well as a significant reduction in carbon emission values from 77.3% to 81.3% [13]. It has also been 

proven that many variations of concrete mixture composition can produce the same compressive strength, resulting in 

different embodied carbon values, even for high compressive strength [9]. Another study in Korea utilized an 

evolutionary algorithm (EA) to evaluate the effectiveness of a low-carbon concrete mix design system, revealing that 

the optimal design reduced CO2 emissions by 4% and 7%, respectively [14]. Nevertheless, specific structural 

components' optimal cost and eco-efficiency combinations may significantly differ [15]. 

Another similar study utilized machine learning called gene expression programming (GEP) to forecast the 

compressive strength of concrete. The study employed rice husk ash, ceramic waste powder, and glass waste powder 

as alternative cement replacements with R-values of 0.95, 0.93, and 0.89 for training, testing, and validation, 

respectively, demonstrating high accuracy and reliability in implementation [16]. Another study employed an artificial 

neural network (ANN) to forecast self-compacting concrete (SCC) properties containing silica fume and fly ash at 

varying stages of maturity, resulting in a correlation coefficient of 0.9835 [17]. Similarly, various ML algorithms, 

which included ANN, extreme gradient boosting (XGBoost), support vector regression (SVR), and adaptive neuro-

fuzzy inference system (ANFIS), were employed to predict the performance of recycled aggregate. These previous 

studies indicate that XGBoost is the better optimal algorithm for predicting compressive strength, with a deviation of 

less than ±10% [18–25]. XGBoost achieves optimal performance by improving regularization to prevent overfitting 

due to model complexity [26]. 

Thus, the current research uses The XGBoost machine learning (ML) algorithm to predict the compressive strength 

at a particular age combined with particle swarm optimization (PSO) framework to acquire a specific concrete 

composition that fulfills the desired objective. Historical data from laboratory testing results are modeled using the 

XGBoost algorithm to predict compressive strength values at a certain age. XGBoost is used because previous studies 

have shown that this algorithm is superior in predicting concrete compressive strength compared to other ML 

algorithms. Optimization is conducted by considering compressive strength, production costs, and carbon emissions 

using PSO. The simulation results are later validated with laboratory testing. Although many previous studies have 

used ML to predict concrete compressive strength, the novelty of this study is the addition of concrete age variables 

that are still rarely studied. In addition, in previous studies using PSO, the weight of each category was determined by 

the researcher himself. Still, in this study, the weight is obtained from the results of a preference study using the 

Analytic Hierarchy Process (AHP) method on construction stakeholders in Indonesia. In this study, validation of the 

PSO-recommended mixture using laboratory tests was also done. The research can guide construction stakeholders in 

formulating a plan identifying the most advantageous concrete mixture, ensuring superior quality while minimizing 

costs and carbon emissions. This approach is particularly important for rapidly industrializing countries like Indonesia 

to promote sustainable practices as it prepares for large-scale growth of the construction industry in the coming years. 

2. Background 

Numerous predictive modeling studies have been conducted to determine the compressive strength of concrete 

using various additives and algorithms. A literature review containing 60 Scopus-indexed Q1 journals published 

between 2020 and 2024 was conducted. The focus of the selected papers included the prediction and optimization of 

concrete mixture composition using ML approaches. Figure 1 illustrates the distribution of ML research on predicting 

and optimizing concrete compressive strength. The results of these investigations revealed the utilization of over 31 

algorithms and 18 different types of materials, as detailed in Table 1.  
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The literature review revealed that the studies related to predicting the compressive strength of concrete are 

primarily carried out on standard concrete and alkali-activated materials (geopolymer). Along with developments in 

construction material technology, studies on the prediction and optimization of compressive strength with various 

alternative materials, such as RCA, SCC, bio-composite aggregate, nano silica, magnesium silicate, magnesium 

phosphate, and plastic aggregate, have begun in multiple regions. However, the opportunity to explore these topics is 

still vast, considering that the concrete component materials in each area have different characteristics. The use of 

Random Forest (RF), Neural Network (NN), XGBoost, Decision Tree/Regression Tree (DT/RT), GB, Support Vector 

Machine (SVM), SVR, and Linear Regression (LR) ML algorithms were found to be the most frequently used in 

recent research. Nevertheless, additional machine learning techniques are now being investigated and hold promise for 

addressing decision-making challenges. Several machine learning algorithms included in this list are Light Gradient-

Boosting Machine (Light GBM), K-Nearest Neighbor (KNN), Gaussian Process Regression (GPR), Ada Boost (AB), 

GEP, and Ridge Regression (RR). In the future, the study of these algorithms still has excellent potential. Given that 

Machine Learning can rapidly create large amounts of data through simulations, it dramatically facilitates decision-

making for people. 

 

      

Figure 1. Country distribution of studies on predicting and optimizing concrete compressive strength using ML  

Despite several studies undertaken, the research on addressing strategies to mitigate the effects of global warming, 

particularly in Indonesia, is still limited. This analysis is crucial because it can support the goals of various countries in 

achieving decarbonization targets by 2030, contributing to the achievement of the SDGs. Most studies apply some 

historical data, which were not used as training data but predominantly as validation data. Considering that the 

concrete constituents vary significantly in each region, the compressive strength results of concrete in one region are 

unique and different from those in other regions, even with the same composition. Many studies have conducted 

laboratory validation tests on new design mixes using ML predictions. However, there are still few studies that have 

focused on both optimization and validation. In the present research, laboratory validation tests were also carried out 

to determine actual compressive strength value errors from test results and predictions using PSO datasets generated 

from the optimization process. This approach is vital to justify the reliability of the ML prediction model for 

application in the field.  

Table 1. Research distribution considering the type of material used 

Type of Material ML Algorithm Frequency Source 

Normal Concrete 

RF 11 [12, 26, 27–34, 35] 

NN 10 [4, 12, 27, 30, 32, 36–40] 

XGBoost 12 [24, 25, 26, 28–31, 33–35, 40] 

GB 8 [24, 26, 28–32, 40] 

DT/RT 7 [12, 24, 25, 30, 32, 35, 37] 

SVM 4 [4, 27, 30, 41] 

SVR 6 [31–33, 36, 37, 42] 

LR 3 [32, 37, 41] 

Alkali-Activated Material (Geopolymer) 

RF 8 [13, 19, 43–48] 

NN 7 [13, 43, 44, 46–49] 

XGBoost 3 [19, 45, 48] 

DT/RT 2 [47, 50] 

GB 4 [13, 45–47] 

SVM 4 [43, 44, 46, 47] 
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Recycle concrete aggregate (RCA) 

RF, DT/RT 3 [51–53] 

NN 4 [22, 51–53] 

XGBoost, GB 3 [51, 52, 54] 

SVR 2 [51, 54] 

LR 1 [51] 

Self-Compacting Concrete (SCC) 

RF 3 [55–57] 

NN, SVM 2 [55, 56] 

XGBoost 3 [20, 55, 57] 

DT/RT 4 [20, 55–57] 

GB 2 [20, 55] 

High strength concrete (HSC) 

RF 1 [58] 

NN, SVM, DT/RT, LR 2 [9, 58, 59] 

XG Boost 1 [59, 60] 

Calcined sludge/clay cement 

RF,NN, SVM, SVR, 

DT/RT, LR 
1 [61] 

XGBoost 1 [62] 

Steel Fiber Reinforced Concrete (SFRC) 
RF, SVR, DT/RT, GB 1 [63] 

NN 1 [64] 

lightweight concrete RF, SVR, LR 1 [65] 

Mortars SVM 1 [66] 

Reactive Powder Concrete RF, DT/RT, XGBoost 1 [67] 

Nano silica concrete RF, NN, SVM, DT/RT, LR 1 [68] 

Magnesium silicate hydrate cement RF, SVR, DT/RT, LR, GB 1 [69] 

Cement-based material RF, SVR, LR, XGBoost 1 [21] 

Bio-composite aggregate concrete NN 1 [70] 

Strain-hardening cementitious composites (SHCC) SVM, XGBoost 1 [71] 

Coral Aggregate Concrete NN 1 [72] 

Plastic Aggregate Concrete RF 1 [73] 

Magnesium phosphate cement 
NN, SVR, DT/RT, LR, 

GB, XGBoost 
1 [74] 

RF: Random Forest, NN: Neural Network, SVM: Support Vector Machine, SVR: Support Vector Regression, DT/RT: Decision Tree/Regression 

Tree, LR: Linear Regression, GB: Gradient Boost, XGBoost: Extreme Gradient Boost. 

3. Data and Method 

A total of 132 datasets were acquired from historical testing data in the laboratory. Table 2 illustrates the range of 

the test data utilized. Scheme 0 is a control variable, where the compressive strength target is 30 MPa, and a water 

content ratio (wc ratio) of 0.5 was used without adding admixture. Scheme 1 uses the same composition as scheme 0 

but adds admixture at doses of 0.2% and 2.0%, indicating minimum, average, and maximum doses. In scheme 2, water 

content is reduced to alter the wc ratio. Meanwhile, in scheme 3, the use of water and cement is reduced to maintain 

the same wc ratio, but the use of cement is reduced. 

Sulfonated naphthalene formaldehyde (SNF)-based admixture has been used in this research, considering its three 

functions: 1) increased workability, without change composition; 2) reduced wc ratio to increase strength and improve 

durability; 3) reduced water and cement at given workability to prevent creep, shrinkage, and thermal strain due to 

cement hydration [75]. The cement utilized is of the Ordinary Portland Cement (OPC) variety, with the fine aggregates 

having a unit weight of 1400 kg/m3 and a silt content of 4.40%. The coarse aggregates have a unit weight of 1385 

kg/m3 and a Los Angeles abrasion test result of 16.80%. 
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Table 2. Experimental Specimen Range (for 1 m3 concrete) 

Parameter Units 
Test scheme 

0 1A 1B 1C 2A 2B 2C 3A 3B 3C 

fc’ Mpa 30 30 30 30 30.47 37.81 40.84 30 30 30 

Water content L 205 205 205 205 203 174 164 203 174 164 

wc ratio - 0.50 0.50 0.50 0.50 0.50 0.43 0.40 0.50 0.50 0.50 

Cement kg 408 408 408 408 408 408 408 404 347 327 

Fine aggregates kg 715 715 715 715 716 727 731 717 752 764 

Coarse aggregates kg 1072 1072 1072 1072 1073 1091 1097 1076 1127 1146 

Admixture content % 0.00% 0.20% 1.10% 2.00% 0.20% 1.10% 2.00% 0.20% 1.10% 2.00% 

Compressive strength and slump data obtained through laboratory tests are shown in Table 3. Compressive 

strength tests were conducted at 1 day, 3 days, 7 days, and 28 days. This technique intends to estimate the concrete 

compressive strength at an early age or a certain age. The data obtained from testing are applied to create a 

compressive strength prediction model using the XGBoost algorithm. The modeling results are displayed in a frontend 

application, which facilitates predictions using large datasets or individual data inputs. This prediction model is then 

used to optimize and obtain a design mix composition that fulfils the strength requirements; it is the most cost-

effective and has the lowest carbon emissions.  

A study in Indonesia found that construction stakeholders prioritize quality (63.33%), cost (26.05%), and carbon 

emissions (10.62%), with data from 35 respondents across Indonesia gathered using the AHP [76]. The weights factor 

obtained from the research is used as the basis for weights in PSO modeling. Slump loss tests were also conducted to 

observe the slump loss characteristics of each composition. The PSO algorithm obtains the most optimal mixture 

composition according to the desired criteria. The results of this optimization were revalidated using laboratory tests 

with the design mix as the PSO output to identify the deviation between the AI modeling outcomes and the field 

results. The complete research process is presented in Figure 2. 

Table 3. Compressive test and slump result from laboratory experiment 

Skema 

Water 

(L) 

Cement 

(kg) 

Fine 

aggregate (kg) 

Coarse 

aggregate (kg) 

Admixture 

(kg)  
fc’ (Mpa) 

 

X1 X2 X3 X4 X5 
 

Y1 Y2 Y3 Y4 Y5 

       
1 day 3 days 7 days 28 days Slump 

0 204.85 408 704 1056 0 
 

12.49 23.31 27.52 33.15 8 

1A 204.85 408 704 1056 0.82 
 

11.97 18.29 28.37 34.51 11 

1B 204.85 408 704 1056 4.49 
 

12.46 20.82 26.46 37.46 23 

1C 204.85 408 704 1056 8.16 
 

12.65 22.22 23.17 36.99 22 

2A 202.79 407.95 705 1058 0.82 
 

17.45 28.06 31.14 43.16 9.5 

2B 174 408 716 1075 4.49 
 

22.79 34.48 39.99 52.01 4.5 

2B-1 192 408 716 1075 4.49 
 

17.9 28.53 33.88 42.17 10 

2C 164 408 721 1081 8.16 
 

25.38 34.67 50.06 52.18 10 

3A 203 404 707 1060 0.82 
 

11.97 26.05 36.93 38.6 9.5 

3B 174 347 741 1111 4.49 
 

14.46 22.94 24.74 34.94 11 

3C 164 326 753 1130 8.16 
 

12.3 21.87 25.64 27.2 10 

 

Figure 2. Research process 

[76] 
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4. Machine Learning Algorithm 

4.1. XGBoost 

A limitation of GBoost is its prolonged iteration process and frequent occurrence of overfitting [60]. The XGBoost 

method was developed to improve the limitations of the GBoost algorithm and mitigate overfitting [77]. As a more 

advanced iteration of GBoost, the XGBoost algorithm is frequently used for model-classifying regression [78]. This 

algorithm consists of several decision trees, which are trained using the prediction outcomes of the previous trees. The 

final result of the model prediction is the summation of the prediction outcomes for each tree, as shown in Equation 1 

[78]. The GB and XGBoost algorithms are illustrated in Figure 3. 

𝑓𝑖
𝑝

= ∑ 𝑓𝑘(𝑥𝑖) =  𝑓𝑖
(𝑝−1) + 𝑙

𝑘 = 1 𝑓𝑖(𝑥𝑖)                  (1) 

where 𝑓𝑝(𝑥𝑖)  is learner stage p, 𝑓𝑖
𝑝
 and 𝑓𝑖

(𝑝−1)
 indicates forecast stages p and p – 1, and 𝑥𝑖 denotes the parameter 

input [60]. 

4.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an optimization method inspired by the collective behavior of birds flocking 

or fish schooling. Kennedy & Eberhart first described it in (1995) [79]. The algorithm involves particles moving 

through a solution space, repositioning themselves according to their optimal position and the best-known positions of 

their neighbors. Consequently, it can effectively solve complex optimization problems [79]. Variations, such as inertia 

weight PSO and constriction factor PSO, have been developed to enhance performance by balancing exploration and 

exploitation [80, 81]. 

 
(a) 

 

(b) 

Figure 3. (a) Schematic of GB (b) General architecture of XGBoost [82] 

PSO algorithm has demonstrated successful applications in diverse domains, encompassing the areas of 

engineering, machine learning, and robotics due to its simplicity and efficiency [83]. Comparative studies have shown 

that PSO often outperforms traditional optimization methods and other metaheuristics, such as genetic algorithms, 

particularly in terms of convergence rate and quality of solution [84]. However, it can struggle with premature 

convergence, which has led to the development of hybrid and adaptive versions to improve performance and 

adaptability [84]. As research continues, PSO is expected to evolve, addressing new challenges and expanding its 

application scope [83]. The PSO algorithm is illustrated in Figure 4 [13]. 
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Figure 4. Illustration of the PSO algorithm 

5. Compressive Strength Prediction and Optimization Model  

The final model is an ensemble of an XGBoost model and a linear regression (LR) model with some weighted 

averaging, then multiplied by a multiplication factor. One hundred ten (110) data samples were used for training and 

22 for validation. The LR model is incorporated to cover the drawbacks of using XGBoost or, generally, a tree-based 

model, which constantly predicts the target value given some gaps between two feature values. In our case, the feature 

is the age of the mixture in days. The training data only consists of three, seven, and 28 days. Thus, a tree-based model 

will result in the exact prediction for a seven-day admixture when new data with an age of 10 days are available. 

During the training and inference phase, the data is standardized for the linear regression and kept as is for the 

XGBoost model. 

The optimum weight and multiplier are determined using a hyperparameter tuning process in parallel to identify 

the best model hyperparameter, applying Bayesian optimization within the Optuna library [85]. The tuning objective, 

as well as the inherent XGBoost objective function, minimize the symmetric mean absolute percentage error 

(SMAPE) metrics as follows: 

𝑆𝑀𝐴𝑃𝐸(𝑦, 𝑝)  =  ∑
|𝑝𝑖−𝑦𝑖|

|𝑝𝑖 + 𝑦𝑖|

𝑁
𝑖 = 1 ,               (2) 

where 𝑦𝑖 and 𝑝𝑖  represent the 𝑖-th actual maximum load and predicted maximum load, respectively. 

The tuning results are 0.9 for the XGBoost weight, 0.1 for the LR weight, and 1.08 for the multiplier. The final 

predicted maximum load of a feature vector 𝑥 is obtained as follows: 

𝑓(𝑥) = 1.08 × (0.9 × 𝑓𝑥𝑔𝑏(𝑥) + 0.1 × 𝑓𝑙𝑟(𝑥)),               (3) 

where 𝑥 = (𝑎𝑔𝑒_𝑑𝑎𝑦𝑠, 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑐_𝑟𝑎𝑡𝑖𝑜, 𝑐𝑒𝑚𝑒𝑛𝑡, 𝑎𝑑𝑚𝑖𝑥𝑡𝑢𝑟𝑒_𝑘𝑔, 𝑓𝑖𝑛𝑒_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑘𝑔, 𝑐𝑜𝑎𝑟𝑠𝑒_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑘𝑔). 

The final equation for the LR model is expressed as follows: 

𝑓𝑙𝑟(𝑎, 𝑑, ℎ, … ) = 95.92 × 𝑎 − 7.81 × 𝑑 − 23.20 × ℎ − 66.46 × 𝑤𝑐𝑟 + 23.37 × 𝑚𝐶 + 7.74 × 𝑚𝑎𝑑 + 0.22 × 𝑚𝑓𝑎 + 1.51 × 𝑚𝑐𝑎         (4) 

where 𝑎, 𝑑, ℎ, 𝑤𝑐𝑟, 𝑚𝐶 , 𝑚𝑎𝑑 , 𝑚𝑓𝑎, 𝑚𝑐𝑎 denote curing age, cylinder sample diameter, sample height, water–cement 

ratio, the weight of cement, the weight of admixture, the weight of fine aggregates, and the weight of coarse aggregate, 

respectively.  

The hyperparameter tuning of the XGBoost model results in a learning rate of 0.0747, a maximum depth of 2, and 

72 estimators. Although the standalone XGBoost model has better metrics than the final ensemble model, it cannot 

monotonically increase the prediction results as the age of the mixture rises. The final ensemble model addresses this 

disadvantage by encompassing the LR model, decreasing the marginal cost of the error metrics. The statistical metrics 

for the preferred algorithms were computed using the prediction outcomes of every sample, as illustrated in Table 4. 

The correlation between the actual and predicted values is shown in Figure 5. 

Table 4. Statistical metrics of ML model 

Model 
Testing Set Training Set 

RMSE MAE R2 SMAPE RMSE MAE R2 SMAPE 

XGBoost 44.3420 35.0929 0.9200 0.0396 39.1869 30.4126 0.9584 0.0330 

LR 490.1090 478.6924 −8.7707 0.8437 510.0522 500.2727 −6.0547 0.8720 

Final Model 48.5147 41.7175 0.9043 0.0484 40.9851 32.0309 0.9544 0.0344 
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Figure 5. Relationship between actual and predicted values of compressive strength 

The graph shows that most samples fall within a relative error range of 20%. This finding indicates that the 

predicted value can adequately describe the actual results even though it is not entirely precise. Sensitivity analysis 

was also performed to ascertain each variable's influence on the XGBoost model's prediction output, as shown in 

Figure 6. The age of the mixture is by far the most essential feature for the XGBoost model, followed by the least 

important feature, which is the mass of the coarse aggregate, with nearly 0% importance. However, feature importance 

does not indicate the effect of increasing or decreasing the value of a feature. It also neglects the impact of the LR 

model. We refer to the partial dependence plot shown in Figure 7. 

 

Figure 6. Feature importance outcomes derived from ML models 

The partial dependence plot shows the effect of increasing or decreasing the value of a feature for the entire final 

model in the final equation. It reveals that while most features have less correlation to the predicted target, the age of 

the mixture has a strong positive correlation, and the water-cement ratio has a strong negative correlation. This is due 

to the strong weightage effect from the XGBoost model. The final prediction of a slump for a sample is expressed as 

follows: 

𝑓𝑠𝑙𝑢𝑚𝑝(𝑤𝑐𝑟, 𝑚𝑤, 𝑚𝑎𝑑, … ) = 57.34 × 𝑤𝑐𝑟 + 0.26 × 𝑚𝑤 + 0.96 × 𝑚𝑎𝑑 + 3.79 × log(1 + 𝑚𝑎𝑑) − 73.4               (5) 

The equation is found by training a linear regression model with the log feature of the mass of the admixture. 
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Figure 7. Partial dependence diagram of the variable input 

The laboratory test findings indicate that scheme 3 offers enhanced performance while simultaneously 

decreasing the amount of cement needed. A predictive experiment was conducted utilizing a dataset within the 

range of scheme 3 to determine the maximum compressive strength that could be attained at the age of three days. 

In addition, the maximum possible reduction in carbon emissions must be determined. The carbon emission value 

is identified by calculating the embodied carbon using data from the Inventory of Carbon and Energy (ICE) 2019 

database, without considering the waste factor [5, 86]. In concrete structure materials, embodied carbon has 

contributed up to 58.13% of the total carbon emissions compared to transportation, equipment, and electricity 

emissions [87].  

The volume of each material is multiplied by its corresponding emission factor, which is calculated in the bill 

of quantities, to determine the amount of carbon contained in concrete. This approach allows us to express the 

embodied carbon in units of kgCO2/kg [88]. The cost of each material was determined through market research 

conducted at the research location region. The market price of each material is multiplied by its corresponding 

volume to calculate the production cost. Table 5 displays the parameter values for carbon emission factors and 

production costs. The result of compressive strength prediction alongside the cost and carbon parameters for the 

new dataset can be seen in Table 6. 

The production costs of materials and embodied carbon are calculated using the following formula: 

𝐶𝐸 =  𝑚𝑤𝐶𝐸𝑤 + 𝑚𝐶𝐶𝐸𝐶 + 𝑚𝑓𝑎𝐶𝐸𝑓𝑎 + 𝑚𝑐𝑎𝐶𝐸𝑐𝑎 + 𝑚𝑎𝑑𝐶𝐸𝑎𝑑                (6) 

𝑃𝐶 =  𝑚𝑤𝑃𝐶𝑤 + 𝑚𝐶𝑃𝐶𝐶 + 𝑚𝑓𝑎𝑃𝐶𝑓𝑎 + 𝑚𝑐𝑎𝑃𝐶𝑐𝑎 + 𝑚𝑎𝑑𝑃𝐶𝑎𝑑                (7) 

Table 5. Parameter for calculating carbon emission and production cost of concrete 

Parameter  Units 

Carbon Emission Factor (CE) [5] Production Cost (PC)* Production Cost (PC) Density** 

kgCO2/kg IDR USD kg/m3 

Water content W kg 0.0003 10 0.0006 1000 

Cement content c kg 0.9120 1,294 0.0809 3100 

Fine aggregates fa kg 0.0075 150 0.0093 2687 

Coarse aggregates ca kg 0.0075 275 0.0172 2630 

Admixture ad kg 1.8800 45,000 2.8125 1170 

* Obtained from market research 

** Obtained from laboratory test 

The prediction model was used to evaluate multiple schemes. The 5B scheme achieved the highest 3-day 

compressive strength, 29.18 MPa. By contrast, the 4D scheme had the lowest embodied carbon, 350.16 kgCO2/kg. 

Nevertheless, production costs increased in all alternatives, necessitating optimization processes to achieve enhanced 

performance. Moreover, carbon emissions decreased, along with reduced production costs. 
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Table 6. Resulting in optimized compressive strength prediction results, production costs, and carbon emissions 

Scheme Age (days) fc' (MPa) Cost of Material Embodied Carbon 

0 3 21.91 932,450 100.00% 385.44 100.00% 

3A 3 24.09 965,255 103.52% 383.36 99.46% 

4B 3 21.58 986,735 105.82% 370.50 96.12% 

4C 3 21.53 1,009,960 108.31% 359.42 93.25% 

4D 3 21.48 1,034,929 111.04% 350.16 90.84% 

5A 3 27.81 988,908 106.04% 403.27 104.62% 

5B 3 29.18 1,009,459 108.36% 390.40 101.29% 

5C 3 27.93 1,031,861 110.73% 378.42 98.18% 

5D 3 27.88 1,056,113 113.34% 368.25 95.54% 

6A 3 27.89 988,194 106.09% 370.58 96.14% 

6B 3 27.89 1,061,352 113.90% 368.42 95.58% 

6. Multi-Objective Optimization 

The original value must be ascertained to obtain the optimization value used as the benchmark. The control 

variable in this study was scheme 0 with a compressive strength of 30 Mpa, without using any admixture. The 

optimization outcomes are compared with the control variables to determine the extent of performance enhancement 

and cost reduction. The parameters used in PSO are presented in Table 7. The following formula is used to achieve 

optimization: 

𝑓(𝑚𝑐, … . , 𝑚𝑤) = α1
|𝐶𝑆−𝐶𝑆∗|

𝐶𝑆
+ α2

|𝑃𝐶−𝑃𝐶∗|

𝑃𝐶
+ α3

|𝐶𝐸−𝐶𝐸∗|

𝐶𝐸
+ α4

|𝑆−𝑆∗|

𝑆
,               (8) 

where 𝐶𝑆, 𝑃𝐶, 𝐶𝐸, and 𝑆 are the predicted compressive strength, production cost, carbon emission, and the predicted 

slump for a sample. The novelty in this study is that the weight of each parameter (α1, α2, α3) is determined by 

analyzing the preferences of construction stakeholders in Indonesia using the AHP method. 𝐶𝑆∗, 𝑃𝐶∗, 𝐶𝐸∗, and 

𝑆∗represent the desired corresponding target depending on the scenario. The constraint is expressed as follows: 

𝑉𝑡𝑜𝑡 =
𝑚𝑐

𝐷𝑐
 + 

𝑚𝑤

𝐷𝑤
 +

𝑚𝑓𝑎

𝐷𝑓𝑎
 + 

𝑚𝑐𝑎

𝐷𝑐𝑎
+  

𝑚𝑎𝑑

𝐷𝑎𝑑
 = 1.              (9) 

The parameters used during the PSO process for all of the scenarios are as follows: 

𝑐1  =  𝑐2  =  2.0 

𝐺𝑘 = 50 

𝑤 = 0.9 

Number of particles = 200 

Table 7. Multi-objective optimization parameter target for PSO simulation 

Scenario α1 α2 α3 α4 Age (Days) CS target PC target CE target 
Slump 

range target 

1 0.6333 0.2605 0.1062 - 28 29.18 932,450 350.155 - 

2 0.6333 0.2605 0.1062 - 3 29.18 932,450 350.155 - 

3 0.6333 0.2605 0.1062 - 3 21 932,450 350.155 - 

4 0.6333 0.2605 0.1062 1.0000 28 30 932,450 350.155 8–12 

5 0.6333 0.2605 0.1062 1.0000 3 28.18 932,450 350.155 8–12 

6 0.6333 0.2605 0.1062 1.0000 3 21.91 932,450 350.155 8–12 

7 0.5700 0.2345 0.0955 0.1000 28 30 932,450 350.155 8–12 

8 0.5700 0.2345 0.0955 0.1000 3 28.18 932,450 350.155 8–12 

9 0.5700 0.2345 0.0955 0.1000 3 21.91 932,450 350.155 8–12 

α1 = 63.33%, α2 = 26.05%, α3 = 10.62% [76]. 

The optimization target parameters are set, prompting ML to search for results that closely approximate these 
parameters. Two scenarios are applied to achieve two optimization alternatives. The first scenario utilizes the 

maximum three-day compressive strength parameters, the lowest production costs, and the lowest carbon emissions. 
The 3-day compressive strength is used because it can improve performance. In addition, construction could be 
accelerated. In the second scenario, the 3-day compressive strength characteristics remain unchanged from the 
standard scheme, with the lowest production costs and carbon emissions. Table 8. summarizes the simulation result 
and compares scheme 0 and the PSO output results regarding compressive strength, production costs, and embodied 
carbon. 
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Table 8 shows that the value of the embodied carbon decreases in all scenarios that result from optimization using 
PSO. Nevertheless, not all individuals benefited from price reductions. As a result of the absence of slump as an input 
parameter in the PSO in scenarios 1 and 2, the obtained slump values cannot sufficiently satisfy the technical 
requirements of 10 ± 2 cm. In scenario 3, the cost efficiency and reduction in embodied carbon are relatively 
satisfactory, but the compressive strength experiences a slight decrease. Cost and carbon emission reductions are 
highly dependent on the composition of cement and admixture. The study results showed that the reductions were 
consistent as long as the additional costs and carbon emissions due to adding admixture were not more significant than 
the reductions in costs and carbon emissions due to reducing cement volume. The engineer may re-analyze the actual 
compressive strength value to ascertain the structure’s overall capacity in line with this 1–2 MPa reduction. This 
reduction should not significantly impact the efficacy of the structure. Referring to ACI 347.2R-17, the determination 
of concrete strength is essential for the timely removal of formwork, affected by the pace of strength development, the 
accuracy of strength assessment, and the load and deformation capacity of the structure. The optimization findings 
indicate that all models show compressive strength values surpassing 70% at 3 days of age. The material has met the 
minimum requirements for structural load-bearing as designed [89]. It suggests that this optimization method can 
accelerate the removal of formwork and shoring in concrete structures. 

Scenarios 3, 4, and 7 were selected for validation through laboratory testing in the subsequent stage. Scenarios 3 
and 7 were applied because the reduction in embodied carbon value and production costs were the most significant 
(9.12%–10.41% carbon reduction; 0.79%–3.06% cost reduction). Meanwhile, scenario 4 was preferred because the 
increase in compressive strength is relatively high (29.16%), but the costs and embodied carbon decrease significantly 
(8.13% carbon reduction and 0.97% cost reduction). However, in scenario 4, the slump value is minimal. Therefore, 
mixing tests were carried out using delayed and immediate addition of admixture [75].  Compared to other studies, 
material optimization using various techniques (including machine learning) can lead to up to 40% cost efficiency and 
2.63%–60% greenhouse gas reduction potential in construction projects. In this study, the optimization can lead to 
carbon reduction by 7%—10% and cost reduction by 1%—3% for each m³ of concrete. Combining with early removal 
of formwork and shoring, it may lead to a 20%-30% cost reduction in building construction projects, which need to be 
studied further. 

7. Model Validation 

To validate the mathematical model, laboratory testing was performed again using the mixed design composition 
of the PSO output results. Table 9 displays the outcomes of this laboratory validation. The average deviation of all 
tests is only 2,515 MPa, which is not greater than 15%. Because the actual compressive strength value as a divider is 
still relatively small at the age of one day, the relative error is substantial, but it is still below 20%. This finding 
demonstrates that the compressive strength prediction value generated by the ML algorithm closely approximates the 
actual compressive strength results. The compressive strength value predicted by the ML is greater than the actual 
compressive strength in schemes 0, 4, and 7, except for 28 days in scheme 7. Because of limited training data, some 
ML predictions may deviate significantly from expectations. While in the results of laboratory evidence, sometimes 
there are factors that slightly affect the results of concrete compressive strength to be different, including curing 
conditions, test age not the same (a difference of several hours), non-uniformity of aggregate material, and other 
factors that need to be studied further. The overall results of schemes 3, 4, and 7 suggest that a solution was obtained, 
satisfying the technical requirements and reducing production costs and the embodied carbon.  

Regarding the slump, a validation test was also conducted immediately with the addition of admixture and with a 
delay. The results of the slump test and slump loss validation tests are shown in Figure 8. The result indicates that 
delayed admixture addition can impact slump remarkably, contrary to the effect of immediate addition of admixture. 
Scenario 4, with delayed admixture addition, demonstrates a substantial slump increment (78%), whereas scenarios 3 
and 7, with delayed admixture, show increases of only 30 and 39%, respectively. The slump prediction result did not 
achieve satisfactory accuracy because of limitations in the dataset. A broad range of objective slump data is required to 
improve slump value predictions beyond the available data of the current study. 

 

Figure 8. Concrete slump comparison among scenarios 0, 3, 4, and 7 for immediate and delayed conditions 
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Table 8. Concrete design mix optimization using PSO considering compressive strength, costs, and carbon emissions 

Scenario 
Age 

(days) 

PSO Results Compressive Strength, Cost, Embodied Carbon, and Slump Comparison 

CS result 

(MPa) 

PC result 

(IDR) 

CE result 

(kgCO2) 

Slump 

Result (cm) 

Water 

(L) 

Cement 

(kg) 

Fine aggregate 

(kg) 

Coarse 

aggregate (kg) 

Admixture 

(L) 

fc' 3 days 

(MPa) 

fc' 28 days 

(MPa) 

Embodied Carbon 

Deviation (kgCO2) 

Production Cost 

Deviation (IDR) 
Slump 

0           21.91 30.56 385.44 0.00 932,450 0 10 

1 28 39.59 928,660 358.47 - 185.7 376.97 718.27 1127.33 0.47 27.64 39.59 358.47 −26.97 928,660 −3,790 4.96 

2 3 27.87 934,961 359.16 - 178.77 377.44 743.85 1129.42 0.5 27.87 39.82 359.16 −26.28 934,961 2,511 2.18 

3 3 21.01 925,122 350.3 - 193.92 367.43 746.7 1092.85 0.78 21.01 28.99 350.3 −35.14 925,122 −7,328 9.89 

4 28 39.47 923,419 354.11 5.33 186.32 372.18 726.99 1137.49 0.4 24.42 39.47 354.11 −31.33 923,419 −9,031 5.33 

5 3 24.51 947,221 367.87 8.08 193.14 386.86 738.77 1097.55 0.71 24.51 39.55 367.87 −17.57 947,221 14,771 8.08 

6 3 27.56 970,918 365.75 8.12 188.66 383.29 737.76 1109.6 1.27 27.56 40.43 365.75 −19.69 970,918 38,468 8.12 

7 28 29 903,932 345.32 7.58 190.59 363.82 720.55 1122.22 0.35 21.02 29 345.32 −40.12 903,932 −28,518 7.58 

8 3 27.66 983,144 373.28 8.87 191.16 392.42 728.85 1096.02 1.42 27.66 40.54 373.28 −12.16 983,144 50,694 8.87 

9 3 27.56 970,918 365.75 8.12 188.66 383.29 737.76 1109.6 1.27 27.56 40.43 365.75 −19.69 970,918 38,468 8.12 

Table 9. Comparison of the compressive strength results from the laboratory test validation and the predicted results 

Scenario Curing age (days) Actual fc' (MPa) Prediction fc’(MPa) Deviation (MPa) Relative Error (%) 

0 1 10.982 13.050 2.068 18.83% 

0 3 20.714 21.820 1.106 5.34% 

0 7 27.126 28.110 0.984 3.63% 

0 28 34.688 35.760 1.072 3.09% 

3 1 14.092 12.920 −1.172 8.32% 

3 3 24.599 21.010 −3.589 14.59% 

3 7 28.261 26.060 −2.201 7.79% 

3 28 35.956 29.000 −6.956 19.35% 

4 1 14.325 16.050 1.725 12.04% 

4 3 20.892 24.420 3.528 16.89% 

4 7 26.733 29.530 2.797 10.46% 

4 28 37.500 39.470 1.970 5.25% 

7 1 11.448 12.900 1.452 12.68% 

7 3 20.153 21.020 0.867 4.30% 

7 7 24.269 26.040 1.771 7.30% 

7 28 32.797 28.980 −3.817 11.64% 

Absolute Average 2.515 11.10% 
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8. Conclusion 

The construction industry is seeking sustainable concrete solutions without compromising cost. This study presents 

an innovative method for predicting the optimum mix design without compromising carbon emissions or production 

costs. It uses XGBoost and LR algorithms to model concrete compressive strength at specific ages and an optimization 

framework called PSO to derive a mix composition that meets compressive strength standards, reduces emissions, and 

minimizes production costs. The PSO weight parameter has been derived from stakeholder preference analysis of 

construction in Indonesia with the AHP method. The XGBoost and LR model combination achieved an R² of 0.9043, 

an RMSE of 48.5147, and a MAPE of 0.0484, indicating that the compressive strength of concrete is most 

significantly influenced by its age, wc ratio, and cement composition. Minimizing the required cement can reduce 

carbon content by 7%—10% and slightly decrease production costs by 1%—3%. Combining with early removal of 

formwork and shoring, it may lead to a 20%-30% cost reduction in building construction projects, which need to be 

studied further. 

Laboratory testing was conducted to validate the result of PSO simulation, achieving a relative error of 11.10%. 

This finding demonstrates that the compressive strength prediction value generated by the ML algorithm closely 

approximates the actual compressive strength results. Regarding the slump prediction, the validation still does not 

meet the expectation due to limited data. A further study using more data, including the immediate and delayed 

admixture addition technique, shall be conducted. The study findings reveal that optimizing the concrete design mix in 

construction projects in Indonesia can significantly reduce carbon emissions. Applying this strategy to all projects 

could reduce global emissions by 4 million metric tons of CO2. These findings are crucial for concrete manufacturers 

and builders seeking cost and carbon emission savings in sustainable concrete mix designs. In further research, the 

results of this study can be simulated and analyzed using lifecycle analysis to determine carbon reduction and 

construction project costs in an ongoing project cycle. 
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