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Abstract

Cannabis is the second most common psychoactive drug in the world, and Thailand is the only country in Southeast Asia
that allows people to use it. To maintain the integrity of different cannabis varieties and get the most out of their crops,
growers, seed sellers, and farmers need to be able to accurately classify cannabis seed kinds. This paper presents a
method for categorizing Thai cannabis seeds through the integration of Histogram of Oriented Gradients (HOG) feature
extraction and Support Vector Machine (SVM) optimization, utilizing k-fold cross-validation and grid search
methodologies. The suggested method worked well for smartly sorting different types of cannabis seeds. The regular
SVM classifier got 94.11% accuracy, the k-fold cross-validation (K=10) got 94.00%, and the grid search optimization
got 93.91%. These results indicate that the proposed method is both reliable and efficient for distinguishing cannabis
seed varieties. Beyond its direct application to Thailand’s cannabis industry, the approach demonstrates the potential of
combining HOG-based feature extraction with SVM optimization for other seed classification tasks in agriculture. By
providing a scalable and accurate tool for seed identification, this work supports quality control, traceability, and
productivity improvement in legal cannabis cultivation and trade.

Keywords: Cannabis Seeds; Classification; HOG; SVM; k-Fold Cross-Validation; Grid Search.

1. Introduction

Cannabis is the second most commonly used psychoactive drug worldwide [1]. Cannabis products have gained
popularity across the globe, owing to their legalization for both medical and recreational use in a number of countries.
Cannabis, often referred to as ganja, has long been used in traditional Thai medicine. However, many nations began
outlawing the plant in the beginning of the nineteenth century. In 1934, Thailand passed the Marijuana Act, making
marijuana illegal. Later, this legislation was included into the Narcotics Act of 1974, which classified marijuana under
Section 7 as a Category V substance [2]. In February 2019, Thailand passed new laws, making it the first and only
country in Southeast Asia to legalize medicinal cannabis, despite the plant having been classified as a banned substance
since the early 1930s [2-4].
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Cannabis may be categorized by color, shape, and size using computer vision and machine learning algorithms.
Classifying seed varieties is crucial for farmers and seed producers to maintain varietal integrity and optimize crop
production. Seeds, being the essential input for plant and agricultural production, has considerable biological and
economic significance. They represent a key concern for farmers, producers, and seed testing facilities striving to ensure
high quality [5]. Seed image analysis is becoming increasingly important for biodiversity conservation. As a result,
recognizing and classifying plant species on Earth has become a major challenge today. Sarker et al. [6] presents a study
on cannabis seed variant detection by utilizing Faster R-CNN, a two-stage object detection model, to detect and classify
17 distinct classes of cannabis seeds sourced locally in Thailand. In order to assess the performance of six Faster R-CNN
models, they compare their performance across key metrics and achieve a mAP score of 94.08% and an F1 score of
95.66%. Islam et al. [7] use deep learning to recognize and classify 17 cannabis seed variants, bypassing manual
assessment. Utilizing a unique dataset of 3,319 high-resolution seed photographs, self-supervised bounding box
annotation is implemented using the Grounding DINO model. Both Faster R-CNN and RetinaNet, two popular object
detection models, are tested with alternative backbone topologies (ResNet50, ResNet101, and ResNeXt101). RetinaNet
with a ResNetl101 backbone obtains the maximum stringent mean average accuracy (mAP) of 0.9458 at IoU 0.5-0.95,
according to extensive testing. Simultaneously, Faster R-CNN with ResNet50 demonstrates exceptional performance at
the lenient 0.5 IoU threshold (0.9428 mAP) while sustaining excellent recall.

To identify 17 Thai cannabis seed varieties, we applied Histogram of Oriented Gradients (HOG) feature extraction-
based SVM optimization with k-fold cross-validation and grid search for the first time in this work. The principal
findings of this study are:

1. Proposing a novel Thailand cannabis seeds classification using HOG feature extraction based SVM
optimization with k-fold cross-validation and grid search to achieve precise classification of the cannabis seeds.

2. Conducting extensive experiments to classify 17 different varieties of cannabis seeds, examining both balanced
and unbalanced datasets.

3. Analyzing the performance of prediction models using important measures like F1-score, accuracy, precision,
and recall.

4. Evaluating the classification accuracy of cannabis seeds using HOG feature extraction-based SVM optimization
with k-fold cross-validation and grid search.

This study is organized as follows: Section 2 summarizes earlier studies. The study methodologies, including the
proposed model, feature extraction strategies, and classifiers, are described in detail in Section 3. The outcomes of
cannabis seed variety categorization and feature extraction are shown in Section 4, along with an evaluation of the
proposed frameworks. The research is summarized, and new directions are recommended in Section 5.

2. Related Works

Artificial intelligence has made tremendous advances in image classification by offering flexible, high-performance,
accurate, and cost-effective solutions to a variety of challenges [8]. Computer vision and image processing technologies
improve evaluation speed and consistency, making them widely used in seed quality assessment [9-25]. Table 1 contrasts
prior research on seed variety categorization. Convolutional neural networks (CNNs) excel at image analysis and
efficiently leverage graphics processing units (GPUs), making them particularly useful for image classification.

Fabiyi et al. [9] used spectral and spatial information from high quality RGB and hyperspectral images to develop an
automated method for screening and categorizing rice seed samples. They employed an extensive set of 8,640 seeds from
90 species to assess their methodology. This dataset is openly accessible to support future benchmarking and
comparisons of both novel and well-established techniques. De Medeiros et al. [10] proposes a system for identifying
soybean seeds and seedlings that integrates traditional and interactive machine leaming techniques based on their
morphology and physiological potential. The researchers demonstrated that the physiological performance of the seeds
and their appearance are correlated. They used free software and cost-effective methods to create models using photos of
soybean seeds and seedlings, achieving an overall classification accuracy of 0.94.

A deep CNN was presented as a general feature extractor by Javanmardi et al. [11]. The extracted characteristics were
categorized using artificial neural networks (ANN), cubic support vector machines (SVM), quadratic SVM, weighted k-
nearest neighbors (KNN), boosted trees, bagged trees, and linear discriminant analysis (LDA). Models trained with CNN-
extracted features have higher classification accuracy for corn seed types than models trained with simply basic features.
With a classification accuracy of 98.1%, precision of 98.2%, recall of 98.1%, and F1-score of 98.1%, the CNN-ANN
classifier had the greatest performance, classifying 2,250 test examples in 26.8 seconds. Using deep learning techniques,
Loddo et al. [12] focused on categorizing the families or species of two plant seed datasets. To find the best CNN for
their research, they thoroughly evaluated SeedNet—a novel CNN created especially for this purpose—with several
cutting-edge convolutional neural networks. Their research produced encouraging findings in terms of seed
categorization, with accuracy rates of 95.65% and 97.37% for the first and second datasets, respectively.

778



Journal of Human, Earth, and Future

Vol. 6, No. 4, December, 2025

Table 1. Related works

Pu?:::mn Author Seed Dataset Method Results
o ) National C'em.er of Protection of Obtaining hlgh—qu'alny RGB aﬁfi Precision 79.4%, Recall 78.80%, and F1-
2020 Fabiyi et al. [9] Rice New Varieties and Goods of hyperspectral graphics by combining Score 78.27%
Plants NCPNVGGP) in Vietnam spectral and spatial information e
. Linear Discriminant Analysis (LDA), . .
2020 de Me(ﬁga)s ctal. Soybean Manually collected dataset Random Forest (RF), and Support Thesewnilt(})ld:rllsoc\lzls,;{i;gcii:i; 2:}% s;:dlmgs
Vector Machine (SVM). .
Javanmardi et al. Seed and Plant Improvement . Accuracy 98.1%, Precision 98.2%, Recall
2021 [11] Corn Institute, Iran Convolutional Neural Networks 98.1%, and F1-score 98.1%.
In both of the investigated datasets; 95.65%
1 0,
2021 Loddo et al. [12] Magnoliophyta Canadian Dataset CNN for th‘? first dataSjct and 97.47% for the
phylum second; seed classification achieved high
accuracy levels.
Accuracy 93.11%, Precision 94.61%, Recall
2021 Luo etal. [13] Weed Manually collected dataset CNN 92.80% and F1-Seore 93.52%.
. Accuracy 99.02%, Precision 98.84%, and F1-
2021 Sabanci et al. [14] Pepper Manually collected dataset CNN Scorc 98.87%.
. Principal component analysis (PCA),
2022 Kh(;]{asm?m.lz};?d & Wheat Manually collected dataset Support Vector Machine (SVM), Accuracy 98.10%
oostaei [15] Artificial Neural Network (ANN)
2023 Maetal. [16] Comears ‘“&‘:ja“&iss:;‘ixf;g“g%g’“ CNN Accuracy 98.56%, F1-Score 98.93%
Rahmani & Mani- Sparse chemometric techniques and For the external test sets, the Lasso model
2023 v faderani [17] Grape Seed oil  Takestan City, Iran's vineyards excitation-emission fluorescence  yielded a coefficient of multiple determination
arnosladerant imaging methods (R2) value of 0.914 and an RMSE of 0.013.
Hyperspectral visualization combined
2023 Zhanget al. [18] Maize Manually collected dataset with an iterative learning system based Accuracy 91%
on dual deep SVDD
2024 Chen et al. [19] Pecan Manually collected dataset SVM Accuracy 96.5%
2024 Bai et al. [20] Coix Manually collected dataset SVM Accuracy 85%
2024  Ekramirad etal. [21] Proso Millet Manually collected dataset PCA and SVM Accuracy 99%
Spectroscopy techniques, Discriminant
. Analysis (DA), Partial Least Squares o
2025 Leng et al. [22] Camellia Manually collected dataset (PLS), and Artificial Neural Networks Accuracy 100%
(ANN)
2025 Kilic et al. [23] Chickpea TRCS_8_SET SVM Accuracy 94.4%
2025 Song et al. [24] Mung bean Jitin Aﬁgz;n‘isof&i:ultural HPMobileNet Accuracy 94.01%
2025 Isles et al. [25] Sunflower Manually collected dataset YOLOV8 and DeepSORT Algorithm Accuracy 91.11%

A nondestructive intelligent picture identification method was used by Luo et al. [13]. They were able to segment
images of individual weed seeds after first setting up an image acquisition system for weed seeds. This procedure
including 47,696 objects, encompassing 140 types of marijuana seeds and foreign materials. After that, they contrasted
six well-liked and cutting-edge deep CNN models to find the best technique for cleverly classifying these 140 different
kinds of weed seeds. Of the total samples, 34,096 samples were put aside for assessing the model's performance, and
33,600 samples were randomly assigned to the training dataset for model training.

Using CNN models, Sabanci et al. [14] sought to categorize pepper seeds from various cultivars. Seeds were collected
from green, orange, red, and yellow pepper varieties. Images of pepper seeds were captured using a flatbed scanner.
Following picture acquisition, the workflow was as follows: image preprocessing, data augmentation utilizing various
techniques, and deep learning-based categorization. Two ways have been offered for categorization. Initially, CNN
models (ResNet18 and ResNet50) were trained on pepper seeds. Unlike the first method, the second method combined
the features of pretrained CNN models and then applied feature selection to the fused features. SVM using several kemel
functions (Linear, Quadratic, Cubic, and Gaussian) was used to classify both all and selected features. ResNet50 and
ResNet18 had respective accuracies of 98.05% and 97.07% in the first approximation. Using the chosen characteristics,
CNN-SVM-Cubic's accuracy in the second method reached 99.02%.

Using a machine vision system, Khojastehnazhand & Roostaei [15] examined seven wheat types from the East
Azerbaijan Province. The Gray Level Run Length Matrix (GLRM), Gray Level Co-occurrence Matrix (GLCM), and
Local Binary Pattern (LBP) methods were used to extract texture information. Principal component analysis (PCA), an
unsupervised technique, was used to examine these characteristics, while SVM and ANN were used as supervised
techniques to assess system accuracy. The ANN model performed best when using all 125 retrieved features, with
Correct Classification Rates (CCR) of 100% for the training dataset and 95.04% for the testing dataset. To outperform the
model trained with all features, chi-square feature selection reduced the feature set to 20 and increased the testing dataset
CCR to 98.10%. Over 95% accuracy was achieved in wheat variety classification using image processing and texture
feature extraction.
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A deep learning network (CornNet) based on customized lightweight CNN and enhanced training techniques for
corn ears categorization was suggested by Ma et al. [16] to address this problem. The researchers employed the global
average pooling layer (GAP) in place of the fully connected layer (FC) to create a lightweight model and enhanced the
structure of VGG16 by decreasing the number of convolution layers (Conv) and its channels to alter network depth.
Batch Normalization (BN) and the Squeeze-and-Excitation network (SE) were employed to enhance feature extraction
capabilities and avoid gradient disappearance. The production line-like image acquisition setting was designed to
collect pictures with consistent characteristics to decrease training data. Performance was enhanced by optimizing two
training strategies: data augmentation and dynamic learning rate. According to the results, CornNet outperformed
MobileNet, ShuffleNet, VGG16, ResNet50, and AlexNet in terms of accuracy, F1-score, model size, and FLOPs,
which were, respectively, 98.93 percent, 0.42 MB, and 0.07 GB. Accuracy increased by 0.26% to 30.91% and 3.07%
to 16.08% using enhanced training techniques.

Excitation-emission spectrum analysis and sparse chemometric approaches were employed by Rahmani & Mani-
Varnosfaderani [17] to identify adulteration of Grape Seed Oil (GSO) with refined sunflower oil (SFO) and to
categorize GSO from various Iranian grape varietals. Two wavelength ranges were used to gather fluorescence
spectra: Aem = 200—-800 nm and Aex = 200—500 nm. More than 200 samples from five distinct GSO types were used in
the study to create multivariate models. An interpretable classification model was created using the N-way partial least
squares discriminant analysis (sSNPLS-DA), and it achieved perfect accuracy (1.00) for every grape genotype.
Significant differences in intensity were found between Chafteh and other GSOs in the Aex = 270-310 nm and Aem =
300-350 nm wavelength ranges, according to an analysis of the fluorescence data. 35 binary blends containing 10%—
50% adulterant were made in order to mimic the adulteration of Chafteh GSO with refined sunflower oil (SFO). For
the quantitative study, Lasso, Ridge, and Elastic Net sparse regression techniques were used. With an RMSE of 0.013
and a coefficient of determination (R2) of 0.914 on external test sets, the Lasso model demonstrated strong
performance. Using hypercube information, Zhang et al. [18] presented a from beginning to end adaptable incremental
learning (IL) system. This approach learns one-class classifiers (OCC) incrementally from initial data absent feature
extraction or preprocessing, hence achieving class-incremental learning (class-IL). Using both spectral and
geographical data, the two-layer high support vector data description OCC builds exclusive hyperspheres for each
variety, enabling it to distinguish between recognized types and rejecting unknown ones. To lessen the effect of
redundant spectral bands, zero weights were assigned to them by the addition of a band spotlight and sparse limitation
module. The performance of the model is greatly enhanced by this improvement. Furthermore, after imposing the
sparse constraint, a novel loss function has been devised to ease parameter changes. The suggested strategy produces
accuracies surpassing 91% for identifying recognized kinds and rejecting unknown ones, according to experimental
results on open set situations. This performance is a significant improvement over the most advanced IL techniques
currently in use.

Chen et al. [19] used machine learning and hyperspectral imaging technology (HSI) to classify pecan varieties and
assess pecan seed quality. The samples for this study consisted of 19 different types of pecan seeds, each comprising
30 seeds. Using feature extraction techniques, spectral features were taken from the spectrum profiles following
spectral preprocessing. To forecast the amounts of moisture and crude fat in pecan seeds, partial least squares models
and back-propagation neural network models were developed. The optimal models yielded R? scores of 0.887 for the
crude fat model and 0.950 for the moisture model. Furthermore, SVM models were created to identify pecan types.
The algorithm had commendable results in identifying 19 pecan types, with an accuracy of 0.965. Using hyperspectral
imaging (HSI) in combination with traditional machine learning methods like SVM, k-nearest neighbors (KNN),
random forests (RF), extreme gradient boosting (XGBoost), and the deep learning technique of residual neural
network (ResNet), Bai et al. [20] created identification models for Coix seed samples from various storage years.
According to Ekramirad et al. [21], 5,000 proso millet seeds were randomly selected and examined from the top 10
cultivars in the US: Cerise, Cope, Earlybird, Huntsman, Minco, Plateau, Rise, Snowbird, Sunrise, and Sunup.
Principal component analysis (PCA) was utilized to minimize the hyperspectral imaging's huge dimensionality. Since
the first two principal components had the highest variance, they were utilized as spectral characteristics to construct
the classification models. Using a Gradient tree boosting ensemble machine learning technique, proso millet cultivars
were classified with 99% accuracy.

In order to categorize Camellia seed varieties and determine the composition of oil and principal FAs, Leng et al. [22]
evaluated spectroscopy methods (Near-Infrared [NIR] vs. Mid-Infrared [MIR] spectroscopy) and analytical models
(Discriminant Analysis [DA], Partial Least Squares [PLS], and Artificial Neural Networks [ANN]). Kilic et al. [23]
integrated three effective and resilient components: feature extraction using three pre-trained models, feature selection via
the ReliefF algorithm, and classification through traditional machine learning techniques to improve classification
accuracy and efficiency. The four hybrid models that were created have been used in a variety of studies. Their
performance has been evaluated based on accuracy, recall, Fl-score, precision, and AUC. The test accuracies of
TL+SVM and TL+LDA were 94% and 94.4%, respectively, higher than the other models. According to Song et al. [24],
eight distinct types of mung bean seeds were gathered, and 34,890 pictures were produced using threshold segmentation
and image enhancement methods. HPMobileNet was the core network model, and training and fine-tuning on a large
mung bean seed picture dataset yielded fast feature extraction categorization and identification. HPMobileNet
outperforms traditional network models in mung bean seed grain classification, improving from 87.40% to 94.01% on the
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test set. Isles et al. [25] used Raspberry Pi hardware to identify and quantify three distinct seed varieties: Giant, DwarfF1,
and Mammoth Grey. Using this approach, high-quality sunflower seed photos were captured for the dataset. In addition
to the Raspberry Pi, the researchers will use an LCD monitor to show the number and type of seeds and a USB webcam
to record the video feed of the sunflower seeds. After several trials and a confusion matrix, the system achieved 91.11%
classification accuracy and 97.56% counting accuracy.

3. Research Methodology

Data input, data preprocessing, HOG feature extraction, SVM classification, SVM optimization with k-fold cross
validation, SVM optimization with grid search, and performance evaluation are the seven main stages of the proposed
method (Figure 1). Initially, photos of cannabis seeds are collected. These images serve as the input dataset for the
classification task. Cannabis seed image is preprocessed by splitting into training and testing sets. After computing
picture gradients in the x and y directions, HOG is used to extract features. This is done by calculating the gradient's
magnitude and orientation, binning orientations into histograms, and performing block normalization. HOG
characteristics are employed for classification via a SVM, which identifies suitable hyperplanes to distinguish seed
classes. Two optimization strategies are used to enhance model performance: k-fold cross-validation is used to assess
model stability, and grid search is used to tune hyperparameters. Finally, measures like accuracy, precision, recall, F1-
score, and confusion matrix are used to evaluate the model's efficacy.

Cannabis Dataset
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Figure 1. The proposed method
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3.1. Histogram of Oriented Gradient (HOG) — Support Vector Machine (SVM)

Histogram of Oriented Gradient approach is used to extract features by capturing the oriented gradients of picture
pixels inside of blocks that are localized. In applications such as image recognition and classification, this approach has
demonstrated remarkable efficacy [26]. A feature vector that enumerates each distinct aspect of a picture is the result of
the HOG algorithm. More processing of these features is frequently done with techniques such as linear discriminant
analysis, which usually calls for more observations than features (variables) [27]. In comparison to the original image, the
resultant feature vector has a substantially smaller dimension, which makes it easier to handle filtering techniques like
SVM, neural networks, or discriminant analysis. These classification approaches can use the information more effectively
and efficiently thanks to this reduction in dimensionality [28].

Dalal & Triggs [29] first presented the HOG approach in 2005 for the purpose of detecting human bodies. It has now
gained widespread attention and has been used extensively in applications related to pattern recognition and computer
vision. HOG extracts characteristics from areas throughout an image grid that are densely sampled in the context of
human detection algorithms. The next step involves the use of linear SVMs to aggregate and classify these features.
Studies have shown that HOG features are much more accurate and useful for human detecting tasks than current feature
sets. Due in part to this accomplishment, HOG has become well-known as a favored descriptor in several computer
vision and pattern recognition domains. The HOG method quantifies occurrences of gradient orientations within certain
regions of a picture. HOG generates tiny square cells, typically measuring 9x9 pixels, from the input picture and use
center differences to produce histograms of gradient or edge direction. These local histograms are contrast-normalized to
enhance accuracy and improve the stability of HOG under varying illumination conditions. Compared to other
descriptors such as Scale-Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP), HOG is known for its
computational efficiency because it is simpler to compute. Several studies have demonstrated that HOG features are good
descriptors for a range of detection tasks, highlighting their usefulness in computer vision applications.

Cannabis seeds often exhibit subtle variations in shape and surface texture, which are well-captured by gradient-based
methods like HOG. HOG effectively encodes the local gradient orientation, which provides a robust descriptor for the
surface patterns and contours of seeds. HOG is less computationally intensive than many other descriptors such as SIFT.
It is faster to compute and requires less processing power, which is ideal for working with large datasets like the one used
here (3,434 seed images). For classifiers like SVM, which have trouble with very high-dimensional data, the approach is
a suitable fit since it drastically decreases the dimensionality of the feature space while maintaining considerable
structural information. Originally proposed for human detection [29], HOG has since been applied successfully in
numerous computer vision tasks, including pattern recognition and object classification. HOG was chosen over
alternatives like SIFT and LBP because it strikes the best balance between performance, computational cost, and
suitability for the specific visual patterns found in cannabis seeds.

Supervised learning, for instance SVM, is applied to both regression and classification tasks. Its main foundation is
linear classification, which places a strong emphasis on creating a large margin. To find the ideal decision boundary, the
SVM classifier uses techniques involving linear, polynomial, sigmoid, and radial basis function (RBF). These techniques
are well-known strategies for solving limited optimization issues. The kernel trick technique used SVM to convert input
into a higher-dimensional space. SVM can create an ideal boundary between various classes or regression outcomes
thanks to this modification. SVM essentially uses complex modifications to reliably separate data according to
predetermined regression targets or class labels [30].

3.2. K-Fold Cross Validation and Grid Search

To improve the models' performance during training, a method known as 10-fold cross-validation is used in this work
[31]. The network data is divided into 10 separate subgroups via the 10-fold technique. The last subgroup is allocated as
the test set, and the other nine subgroups are utilized for training the models in each iteration. This method minimizes
bias by predominantly utilizing data from 10 cycles to train the models. Furthermore, the weights of the convolutional
layers of the models are adjusted with each iteration, so they enhance the training procedure. The model being examined
undergoes 10 training cycles following the partitioning of the data into 10 subgroups. The grid search approach has
enhanced learning accuracy. The grid search approach has the benefit of allowing parallel processing of SVM training
since they are independent of one another [32].

3.3. Datasets

The cannabis seed collection covers seventeen categories: purple duck, skunk (auto), sour diesel (auto), blackberry
(auto), ak47 image, cherry pie, gelato, gorilla purple, Tanaosri Kan Daeng Rd1, Tanaosri Kan Kaw Wal, Hang Kra Rog
Ku, Hang Kra Rog Phu Phan St1, Hang Suea Sakon Nakhon Ttl, KD, KD KT, Kremg Ka Via, and Thaistick Foi Thong
[33]. Figure 2 shows cannabis seeds. The oil content of cannabis seeds typically ranges from 29 to 34 percent by weight
and can be extracted into a transparent yellow liquid. Among the many uses for cannabis seeds are in cosmetic products
including lip balms, shampoos, moisturizers, and lotions. Body oils and lipid-enriched lotions contain cannabis seed oil as
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one of their ingredients [34]. The images were taken with a mobile phone, and the cannabis plants were grown in both
indoor and outdoor settings. Notably, white was the backdrop used for every image of a cannabis seed. Table 2 shows

image specification and also, Table 3 shows Cannabis seeds dataset details.

Table 2. Image specification [33]

Sr No. Components Details as per vegetable category

1 Dimension 3024 x 4032

2 Width 3024 pixels

3 Height 4032 pixels

4 Horizontal Resolution 72 dpi

5 Vertical Resolution 72 dpi

6 Bit Depth 24

7 Resolution Unit 2

Table 3. Cannabis seeds dataset details [33]

Seed types Total image
ak47 106
blackberry (auto) 203
cherry pie 50
gelato 327
gorilla purple 554
hang kra rog ku 153
hang kra rog phu phan stl 249
hang suea sakon Nakhon ttl 192
kd 49
kd_kt 147
krerng ka via 141
purple duck 151
skunk (auto) 233
sour diesel (auto) 327
tanaosri kan Daeng rd1 157
tanaosri kan kaw wal 183
thaistick foi thong 212
Total 3,434
4 ’ F ‘ I F N | 1
0o e - t bl
'Y ) " “u ) " “ﬁ‘
hited | b Ll d L A T4
(a) Ak47 b) Blackberry (c) Cherry pie (d) Gelato (e) Gorilla purple (f)Hang kra rog ku
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Figure 2. Cannabis Seeds [33]
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3.4. Evaluation Metrics

Counts of genuine positives, negatives, false positives, and false negatives are often described using binary
classification assessment metrics using a matrix of sizes 2 [35]. When the model correctly classifies samples, it is known
as a true positive. Samples that are accurately classified as not belonging to the class are referred to as true negatives.
False positives and false negatives are indicators of inaccurate predictions; false positives occur when samples are
incorrectly classified as such, while false negatives occur when the model is unable to identify cases. To achieve optimal
outcomes, successful designs aim to minimize both false positives and false negatives. We employed many standard
assessment metrics to comprehensively assess the effectiveness of our proposed technique for identification and
classification. These include the F1-score, recall, accuracy, and precision.

1) Accuracy

The accuracy score reflects how well the model categorized. Accuracy is defined as the proportion of correctly
predicted samples relative to the total number of data points. The total count of correctly predicted samples over the
whole collection. Equation 1 is employed to calculate this metric.

1
Accuracy (h) = — Tyex[h(x) = y] @

1X]
2) Precision

Precision quantifies the ratio of correctly recognized dangerous programs to the total number of instances expected to
belong to that category. Precision provides information on the classifier's performance in classifying based on
misclassification, or false-negatives. This statistic illustrates the precision of positive predictions by considering both true
positives and false positives. When accuracy reaches its maximum, the number of false positives is as low as feasible.
The precise calculation is found on Equation 2.

_ 25':1”’]'
Recall (h) = s T r :

Here, t,,, stands for the number of true-positive identifications, and f,, for the number of false-positive identifications.

3) Recall

Based on false-positives, recall provides the model's performance efficiency. Recall is also known as the True Positive
Rate (TPR), which is the proportion of correctly predicted positive cases (true positives) in the dataset that are actual
positive occurrences. The model's ability to identify each positive event is evaluated. Equation 3 is employed in the
calculation of recall.

Zl-_ tpj
Recall (h) = o221 — 3
) = ST oy 1) ®
The algorithm model's true-positive identification count is denoted by t,,, while its false-negative identification count
is denoted by f,,.

4) F1-score

Using precision and recall, the weighted average of precision and recall, the F1 score yields an efficiency score for the
model. Equation 4 provides a balanced evaluation of a model's classification abilities by computing the harmonic median
of recall and accuracy, which is the basis for the F1 score.

2 X True Positives
F1 —score = — — , “)
2 X True Positives+False Positives+False Negatives

5) Confusion Matrix

In binary and multi-class contexts, the confusion matrix is an essential tool for evaluating the performance of a
classification model. It provides essential metrics such as recall, accuracy, and precision.

4. Results and Discussion
4.1. SVM Classifier

Histogram of Oriented Gradients features are derived by calculating orientation histograms of edge intensities in
localized segments of an image. They are especially proficient in differentiating the 17 cannabis seed classes, since
they effectively encode both shape and texture, exhibit resilience to illumination fluctuations, and capture the unique
structural patterns of many seed kinds. The HOG characteristics are taken from a dense grid throughout the picture and
classified using a linear SVM in the object identification process. SVMs are supervised learning models that fall
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within the generalized linear classifier family and are used for both regression and classification. By maximizing the
geometric margin between classes and minimizing empirical classification error, they function according to the
maximum margin classification principle. According to Structural Risk Minimization (SRM), SVMs transform input
vectors into a higher-dimensional space to establish a maximum separation hyperplane. To improve generalization
performance, two parallel hyperplanes are placed on either side of this decision boundary. The ideal hyperplane
maximizes the distance between them. The SVM classifier attained an accuracy rate of 94.11% in this investigation.
The SVM classifier's training results are shown in Table 4, and the associated confusion matrix and training and test
dataset comparison are displayed in Figure 3.

Table 4. Results for training SVM Classifier

Precision Recall F1-Score Support
0 0.92 0.71 0.80 17
1 0.89 0.66 0.76 50
2 1.00 1.00 1.00 57
3 0.95 1.00 0.98 79
4 1.00 1.00 1.00 98
5 1.00 0.96 0.98 26
6 0.97 0.99 0.98 70
7 0.50 0.38 0.43 13
8 0.83 0.96 0.89 93
9 0.94 0.97 0.95 152
10 1.00 1.00 1.00 36
11 0.94 0.92 0.93 84
12 0.92 0.94 0.93 50
13 1.00 1.00 1.00 56
14 0.98 0.94 0.96 51
15 0.90 0.96 0.93 46
16 0.95 0.87 0.91 23
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(a) Confusion matrix for training SVM classifier (b) Trained vs test for training SVM classifier

Figure 3. SVM classifier

4.2. Optimizing SVM classifiers with K-Fold Cross Validation (K=10) and Grid Search

The results of improving the SVM Classifier using Grid Search and K-Fold Cross Validation (K=10) are displayed in
Table 5. The confusion matrix for SVM Classifier optimization using K-Fold Cross Validation (K=10) is displayed in
Figure 4(a). To optimize the SVM Classifier using K-Fold Cross Validation (K=10), Figure 4(b) displays the training vs
test results. The accuracy of the first, second, third, fourth, fifth, sixth, seventh, eighth, and tenfold folds is 94.01%,
94.91%, 94.91%, 94.31%, 93.41%, 94.01%, 92.79%, 95.20%, 93.69%, and 93.69%, respectively. The confusion matrix
used to optimize the SVM classifier using grid search is displayed in Figure 4(c). The training and test results for
improving the SVM Classifier using Grid Search are displayed in Figure 4(d). By using Grid Search to optimize the SVM
Classifier, we get an accuracy rating of 93.91%.
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Table 5. Result for optimizing SVM Classifier with K-Fold Cross Validation (K=10) and Grid Search

K-Fold Cross Validation (K=10) Grid Search

Precision Recall F1-Score Support Precision Recall F1-Score Support

0 1.00 1.00 1.00 4 0.92 0.71 0.80 17
1 0.86 0.80 0.83 15 0.89 0.66 0.76 50
2 1.00 1.00 1.00 15 1.00 1.00 1.00 57
3 0.92 0.96 0.94 24 0.95 1.00 0.98 79
4 1.00 1.00 1.00 32 1.00 1.00 1.00 98
5 1.00 0.91 0.95 11 1.00 0.96 0.98 26
6 1.00 1.00 1.00 20 0.97 0.99 0.98 70
7 0.50 0.20 0.29 5 0.57 031 0.40 13
8 0.91 0.88 0.89 33 0.84 0.95 0.89 93
9 0.90 0.98 0.94 55 0.91 0.98 0.94 152
10 1.00 1.00 1.00 16 1.00 1.00 1.00 36
11 1.00 0.83 0.91 24 0.95 0.92 0.93 84
12 0.75 0.94 0.83 16 0.92 0.94 0.93 50
13 1.00 1.00 1.00 21 1.00 1.00 1.00 56
14 0.90 1.00 0.95 19 0.98 0.92 0.95 51
15 1.00 0.93 0.96 14 0.88 0.93 0.91 46
16 1.00 0.89 0.94 9 1.00 0.87 0.93 23
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Figure 4. Optimizing SVM classifier
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5. Conclusion

The classification of cannabis seeds in Thailand has been created in this study, which uses grid search and SVM
optimization based on HOG feature extraction with k-fold cross validation to classify 17 classes of cannabis seed photos
with high accuracy. A dataset of cannabis seeds, including 3,434 photos, was created, with images sourced from cannabis
seeds of diverse types under varying brightness and surface conditions. Simultaneously, four assessment metrics were
compared: Precision, Recall, F1 Score, and Accuracy. The algorithm effectively recognized the target items, achieving
accuracy rates of 94.11% for the SVM Classifier, 94% for the SVM Classifier with K-Fold Cross Validation (K=10), and
93.91% for the SVM Classifier with Grid Search. The enhanced HOG feature extraction-based SVM optimization
utilizing k-fold cross-validation and grid search may get precise categorization of cannabis seeds from Thailand. Our
findings indicate that HOG SVM, with k-fold cross-validation and grid search, is an effective method for the precise
categorization of cannabis seed types, with potential for future enhancement.
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