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Abstract 

Cannabis is the second most common psychoactive drug in the world, and Thailand is the only country in Southeast Asia 

that allows people to use it. To maintain the integrity of different cannabis varieties and get the most out of their crops, 

growers, seed sellers, and farmers need to be able to accurately classify cannabis seed kinds. This paper presents a 

method for categorizing Thai cannabis seeds through the integration of Histogram of Oriented Gradients (HOG) feature 

extraction and Support Vector Machine (SVM) optimization, utilizing k-fold cross-validation and grid search 

methodologies. The suggested method worked well for smartly sorting different types of cannabis seeds. The regular 

SVM classifier got 94.11% accuracy, the k-fold cross-validation (K=10) got 94.00%, and the grid search optimization 

got 93.91%. These results indicate that the proposed method is both reliable and efficient for distinguishing cannabis 

seed varieties. Beyond its direct application to Thailand’s cannabis industry, the approach demonstrates the potential of 

combining HOG-based feature extraction with SVM optimization for other seed classification tasks in agriculture. By 

providing a scalable and accurate tool for seed identification, this work supports quality control, traceability, and 

productivity improvement in legal cannabis cultivation and trade. 
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1. Introduction 

Cannabis is the second most commonly used psychoactive drug worldwide [1]. Cannabis products have gained 

popularity across the globe, owing to their legalization for both medical and recreational use in a number of countries. 

Cannabis, often referred to as ganja, has long been used in traditional Thai medicine. However, many nations began 

outlawing the plant in the beginning of the nineteenth century. In 1934, Thailand passed the Marijuana Act, making 

marijuana illegal. Later, this legislation was included into the Narcotics Act of 1974, which classified marijuana under 

Section 7 as a Category V substance [2]. In February 2019, Thailand passed new laws, making it the first and only 

country in Southeast Asia to legalize medicinal cannabis, despite the plant having been classified as a banned substance 

since the early 1930s [2-4]. 
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Cannabis may be categorized by color, shape, and size using computer vision and machine learning algorithms. 

Classifying seed varieties is crucial for farmers and seed producers to maintain varietal integrity and optimize crop 

production. Seeds, being the essential input for plant and agricultural production, has considerable biological and 

economic significance. They represent a key concern for farmers, producers, and seed testing facilities striving to ensure 

high quality [5]. Seed image analysis is becoming increasingly important for biodiversity conservation. As a result, 

recognizing and classifying plant species on Earth has become a major challenge today. Sarker et al. [6] presents a study 

on cannabis seed variant detection by utilizing Faster R-CNN, a two-stage object detection model, to detect and classify 

17 distinct classes of cannabis seeds sourced locally in Thailand. In order to assess the performance of six Faster R-CNN 

models, they compare their performance across key metrics and achieve a mAP score of 94.08% and an F1 score of 

95.66%. Islam et al. [7] use deep learning to recognize and classify 17 cannabis seed variants, bypassing manual 

assessment. Utilizing a unique dataset of 3,319 high-resolution seed photographs, self-supervised bounding box 

annotation is implemented using the Grounding DINO model. Both Faster R-CNN and RetinaNet, two popular object 

detection models, are tested with alternative backbone topologies (ResNet50, ResNet101, and ResNeXt101). RetinaNet 

with a ResNet101 backbone obtains the maximum stringent mean average accuracy (mAP) of 0.9458 at IoU 0.5–0.95, 

according to extensive testing. Simultaneously, Faster R-CNN with ResNet50 demonstrates exceptional performance at 

the lenient 0.5 IoU threshold (0.9428 mAP) while sustaining excellent recall.                                                                                                                                                                                                                                             

To identify 17 Thai cannabis seed varieties, we applied Histogram of Oriented Gradients (HOG) feature extraction-

based SVM optimization with k-fold cross-validation and grid search for the first time in this work. The principal 

findings of this study are: 

1. Proposing a novel Thailand cannabis seeds classification using HOG feature extraction based SVM 

optimization with k-fold cross-validation and grid search to achieve precise classification of the cannabis seeds. 

2. Conducting extensive experiments to classify 17 different varieties of cannabis seeds, examining both balanced 

and unbalanced datasets. 

3. Analyzing the performance of prediction models using important measures like F1-score, accuracy, precision, 

and recall. 

4. Evaluating the classification accuracy of cannabis seeds using HOG feature extraction-based SVM optimization 

with k-fold cross-validation and grid search. 

This study is organized as follows: Section 2 summarizes earlier studies. The study methodologies, including the 

proposed model, feature extraction strategies, and classifiers, are described in detail in Section 3. The outcomes of 

cannabis seed variety categorization and feature extraction are shown in Section 4, along with an evaluation of the 

proposed frameworks. The research is summarized, and new directions are recommended in Section 5. 

2. Related Works  

Artificial intelligence has made tremendous advances in image classification by offering flexible, high-performance, 

accurate, and cost-effective solutions to a variety of challenges [8]. Computer vision and image processing technologies 

improve evaluation speed and consistency, making them widely used in seed quality assessment [9-25]. Table 1 contrasts 

prior research on seed variety categorization. Convolutional neural networks (CNNs) excel at image analysis and 

efficiently leverage graphics processing units (GPUs), making them particularly useful for image classification.  

Fabiyi et al. [9] used spectral and spatial information from high quality RGB and hyperspectral images to develop an 

automated method for screening and categorizing rice seed samples. They employed an extensive set of 8,640 seeds from 

90 species to assess their methodology. This dataset is openly accessible to support future benchmarking and 

comparisons of both novel and well-established techniques. De Medeiros et al. [10] proposes a system for identifying 

soybean seeds and seedlings that integrates traditional and interactive machine learning techniques based on their 

morphology and physiological potential. The researchers demonstrated that the physiological performance of the seeds 

and their appearance are correlated. They used free software and cost-effective methods to create models using photos of 

soybean seeds and seedlings, achieving an overall classification accuracy of 0.94.  

A deep CNN was presented as a general feature extractor by Javanmardi et al. [11]. The extracted characteristics were 

categorized using artificial neural networks (ANN), cubic support vector machines (SVM), quadratic SVM, weighted k-

nearest neighbors (kNN), boosted trees, bagged trees, and linear discriminant analysis (LDA). Models trained with CNN-

extracted features have higher classification accuracy for corn seed types than models trained with simply basic features. 

With a classification accuracy of 98.1%, precision of 98.2%, recall of 98.1%, and F1-score of 98.1%, the CNN-ANN 

classifier had the greatest performance, classifying 2,250 test examples in 26.8 seconds. Using deep learning techniques, 

Loddo et al. [12] focused on categorizing the families or species of two plant seed datasets. To find the best CNN for 

their research, they thoroughly evaluated SeedNet—a novel CNN created especially for this purpose—with several 

cutting-edge convolutional neural networks. Their research produced encouraging findings in terms of seed 

categorization, with accuracy rates of 95.65% and 97.37% for the first and second datasets, respectively. 
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Table 1. Related works 

Publication 
Year 

Author Seed Dataset Method Results 

2020 Fabiyi et al. [9] Rice 
National Center of Protection of 

New Varieties and Goods of 

Plants (NCPNVGGP) in Vietnam 

Obtaining high-quality RGB and 

hyperspectral graphics by combining 

spectral and spatial information 

Precision 79.4%, Recall 78.80%, and F1-

Score 78.27% 

2020 
de Medeiros et al. 

[10] 
Soybean Manually collected dataset 

Linear Discriminant Analysis (LDA), 

Random Forest (RF), and Support 

Vector Machine (SVM). 

These models classified seeds and seedlings 

with an overall accuracy of 0.94. 

2021 
Javanmardi et al. 

[11] 
Corn 

Seed and Plant Improvement 

Institute, Iran 
Convolutional Neural Networks 

Accuracy 98.1%, Precision 98.2%, Recall 

98.1%, and F1-score 98.1%. 

2021 Loddo et al. [12] 
Magnoliophyta 

phylum 
Canadian Dataset CNN 

In both of the investigated datasets; 95.65% 

for the first dataset and 97.47% for the 

second; seed classification achieved high 

accuracy levels. 

2021 Luo et al. [13] Weed Manually collected dataset CNN 
Accuracy 93.11%, Precision 94.61%, Recall 

92.80% and F1-Score 93.52%. 

2021 Sabanci et al. [14] Pepper Manually collected dataset CNN 
Accuracy 99.02%, Precision 98.84%, and F1-

Score 98.87%. 

2022 
Khojastehnazhand & 

Roostaei [15] 
Wheat Manually collected dataset 

Principal component analysis (PCA), 

Support Vector Machine (SVM), 

Artificial Neural Network (ANN) 

Accuracy 98.10% 

2023 Ma et al. [16] Corn ears 
Jiuquan Ok Seed Machinery Co., 

Ltd., Gansu Province, China 
CNN Accuracy 98.56%, F1-Score 98.93% 

2023 
Rahmani & Mani-

Varnosfaderani [17] 
Grape Seed oil Takestan City, Iran's vineyards 

Sparse chemometric techniques and 

excitation-emission fluorescence 

imaging methods 

For the external test sets, the Lasso model 

yielded a coefficient of multiple determination 

(R2) value of 0.914 and an RMSE of 0.013. 

2023 Zhang et al. [18] Maize Manually collected dataset 

Hyperspectral visualization combined 

with an iterative learning system based 

on dual deep SVDD 

Accuracy 91% 

2024 Chen et al. [19] Pecan Manually collected dataset SVM Accuracy 96.5% 

2024 Bai et al. [20] Coix Manually collected dataset SVM Accuracy 85% 

2024 Ekramirad et al. [21] Proso Millet Manually collected dataset PCA and SVM Accuracy 99% 

2025 Leng et al. [22] Camellia Manually collected dataset 

Spectroscopy techniques, Discriminant 

Analysis (DA), Partial Least Squares 

(PLS), and Artificial Neural Networks 

(ANN) 

Accuracy 100% 

2025 Kilic et al. [23] Chickpea TRCS_8_SET SVM Accuracy 94.4% 

2025 Song et al. [24] Mung bean 
Jilin Academy of Agricultural 

Sciences, China 
HPMobileNet Accuracy 94.01% 

2025 Isles et al. [25] Sunflower Manually collected dataset YOLOv8 and DeepSORT Algorithm Accuracy 91.11% 

A nondestructive intelligent picture identification method was used by Luo et al. [13]. They were able to segment 
images of individual weed seeds after first setting up an image acquisition system for weed seeds. This procedure 

including 47,696 objects, encompassing 140 types of marijuana seeds and foreign materials. After that, they contrasted 
six well-liked and cutting-edge deep CNN models to find the best technique for cleverly classifying these 140 different 
kinds of weed seeds. Of the total samples, 34,096 samples were put aside for assessing the model's performance, and 

33,600 samples were randomly assigned to the training dataset for model training.  

Using CNN models, Sabanci et al. [14] sought to categorize pepper seeds from various cultivars. Seeds were collected 
from green, orange, red, and yellow pepper varieties. Images of pepper seeds were captured using a flatbed scanner. 

Following picture acquisition, the workflow was as follows: image preprocessing, data augmentation utilizing various 
techniques, and deep learning-based categorization. Two ways have been offered for categorization. Initially, CNN 

models (ResNet18 and ResNet50) were trained on pepper seeds. Unlike the first method, the second method combined 
the features of pretrained CNN models and then applied feature selection to the fused features. SVM using several kernel 
functions (Linear, Quadratic, Cubic, and Gaussian) was used to classify both all and selected features. ResNet50 and 

ResNet18 had respective accuracies of 98.05% and 97.07% in the first approximation. Using the chosen characteristics, 
CNN-SVM-Cubic's accuracy in the second method reached 99.02%. 

Using a machine vision system, Khojastehnazhand & Roostaei [15] examined seven wheat types from the East 

Azerbaijan Province. The Gray Level Run Length Matrix (GLRM), Gray Level Co-occurrence Matrix (GLCM), and 
Local Binary Pattern (LBP) methods were used to extract texture information. Principal component analysis (PCA), an 

unsupervised technique, was used to examine these characteristics, while SVM and ANN were used as supervised 
techniques to assess system accuracy. The ANN model performed best when using all 125 retrieved features, with 
Correct Classification Rates (CCR) of 100% for the training dataset and 95.04% for the testing dataset. To outperform the 

model trained with all features, chi-square feature selection reduced the feature set to 20 and increased the testing dataset 
CCR to 98.10%. Over 95% accuracy was achieved in wheat variety classification using image processing and texture 

feature extraction.  
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A deep learning network (CornNet) based on customized lightweight CNN and enhanced training techniques for 

corn ears categorization was suggested by Ma et al. [16] to address this problem. The researchers employed the global 

average pooling layer (GAP) in place of the fully connected layer (FC) to create a lightweight model and enhanced the 
structure of VGG16 by decreasing the number of convolution layers (Conv) and its channels to alter network depth. 

Batch Normalization (BN) and the Squeeze-and-Excitation network (SE) were employed to enhance feature extraction 

capabilities and avoid gradient disappearance. The production line-like image acquisition setting was designed to 

collect pictures with consistent characteristics to decrease training data. Performance was enhanced by optimizing two 

training strategies: data augmentation and dynamic learning rate. According to the results, CornNet outperformed 

MobileNet, ShuffleNet, VGG16, ResNet50, and AlexNet in terms of accuracy, F1-score, model size, and FLOPs, 

which were, respectively, 98.93 percent, 0.42 MB, and 0.07 GB. Accuracy increased by 0.26% to 30.91% and 3.07% 

to 16.08% using enhanced training techniques.  

Excitation-emission spectrum analysis and sparse chemometric approaches were employed by Rahmani & Mani-

Varnosfaderani [17] to identify adulteration of Grape Seed Oil (GSO) with refined sunflower oil (SFO) and to 

categorize GSO from various Iranian grape varietals. Two wavelength ranges were used to gather fluorescence 

spectra: λem = 200–800 nm and λex = 200–500 nm. More than 200 samples from five distinct GSO types were used in 
the study to create multivariate models. An interpretable classification model was created using the N-way partial least 

squares discriminant analysis (sNPLS-DA), and it achieved perfect accuracy (1.00) for every grape genotype. 

Significant differences in intensity were found between Chafteh and other GSOs in the λex = 270–310 nm and λem = 

300–350 nm wavelength ranges, according to an analysis of the fluorescence data. 35 binary blends containing 10%–

50% adulterant were made in order to mimic the adulteration of Chafteh GSO with refined sunflower oil (SFO). For 

the quantitative study, Lasso, Ridge, and Elastic Net sparse regression techniques were used. With an RMSE of 0.013 

and a coefficient of determination (R2) of 0.914 on external test sets, the Lasso model demonstrated strong 

performance. Using hypercube information, Zhang et al. [18] presented a from beginning to end adaptable incremental 

learning (IL) system. This approach learns one-class classifiers (OCC) incrementally from initial data absent feature 

extraction or preprocessing, hence achieving class-incremental learning (class-IL). Using both spectral and 

geographical data, the two-layer high support vector data description OCC builds exclusive hyperspheres for each 

variety, enabling it to distinguish between recognized types and rejecting unknown ones. To lessen the effect of 

redundant spectral bands, zero weights were assigned to them by the addition of a band spotlight and sparse limitation 

module. The performance of the model is greatly enhanced by this improvement. Furthermore, after imposing the 

sparse constraint, a novel loss function has been devised to ease parameter changes. The suggested strategy produces 

accuracies surpassing 91% for identifying recognized kinds and rejecting unknown ones, according to experimental 

results on open set situations. This performance is a significant improvement over the most advanced IL techniques 

currently in use. 

Chen et al. [19] used machine learning and hyperspectral imaging technology (HSI) to classify pecan varieties and 

assess pecan seed quality. The samples for this study consisted of 19 different types of pecan seeds, each comprising 

30 seeds. Using feature extraction techniques, spectral features were taken from the spectrum profiles following 

spectral preprocessing. To forecast the amounts of moisture and crude fat in pecan seeds, partial least squares models 

and back-propagation neural network models were developed. The optimal models yielded R² scores of 0.887 for the 

crude fat model and 0.950 for the moisture model. Furthermore, SVM models were created to identify pecan types. 

The algorithm had commendable results in identifying 19 pecan types, with an accuracy of 0.965. Using hyperspectral 

imaging (HSI) in combination with traditional machine learning methods like SVM, k-nearest neighbors (KNN), 

random forests (RF), extreme gradient boosting (XGBoost), and the deep learning technique of residual neural 

network (ResNet), Bai et al. [20] created identification models for Coix seed samples from various storage years. 

According to Ekramirad et al. [21], 5,000 proso millet seeds were randomly selected and examined from the top 10 

cultivars in the US: Cerise, Cope, Earlybird, Huntsman, Minco, Plateau, Rise, Snowbird, Sunrise, and Sunup. 
Principal component analysis (PCA) was utilized to minimize the hyperspectral imaging's huge dimensionality. Since 

the first two principal components had the highest variance, they were utilized as spectral characteristics to construct 

the classification models. Using a Gradient tree boosting ensemble machine learning technique, proso millet cultivars 

were classified with 99% accuracy. 

In order to categorize Camellia seed varieties and determine the composition of oil and principal FAs, Leng et al. [22] 

evaluated spectroscopy methods (Near-Infrared [NIR] vs. Mid-Infrared [MIR] spectroscopy) and analytical models 

(Discriminant Analysis [DA], Partial Least Squares [PLS], and Artificial Neural Networks [ANN]). Kilic et al. [23] 

integrated three effective and resilient components: feature extraction using three pre-trained models, feature selection via 

the ReliefF algorithm, and classification through traditional machine learning techniques to improve classification 

accuracy and efficiency. The four hybrid models that were created have been used in a variety of studies. Their 

performance has been evaluated based on accuracy, recall, F1-score, precision, and AUC. The test accuracies of 

TL+SVM and TL+LDA were 94% and 94.4%, respectively, higher than the other models. According to Song et al. [24], 
eight distinct types of mung bean seeds were gathered, and 34,890 pictures were produced using threshold segmentation 

and image enhancement methods. HPMobileNet was the core network model, and training and fine-tuning on a large 

mung bean seed picture dataset yielded fast feature extraction categorization and identification. HPMobileNet 

outperforms traditional network models in mung bean seed grain classification, improving from 87.40% to 94.01% on the 
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test set. Isles et al. [25] used Raspberry Pi hardware to identify and quantify three distinct seed varieties: Giant, Dwarf F1, 

and Mammoth Grey. Using this approach, high-quality sunflower seed photos were captured for the dataset. In addition 

to the Raspberry Pi, the researchers will use an LCD monitor to show the number and type of seeds and a USB webcam 
to record the video feed of the sunflower seeds. After several trials and a confusion matrix, the system achieved 91.11% 

classification accuracy and 97.56% counting accuracy. 

3. Research Methodology  

Data input, data preprocessing, HOG feature extraction, SVM classification, SVM optimization with k-fold cross 

validation, SVM optimization with grid search, and performance evaluation are the seven main stages of the proposed 

method (Figure 1). Initially, photos of cannabis seeds are collected. These images serve as the input dataset for the 

classification task. Cannabis seed image is preprocessed by splitting into training and testing sets. After computing 

picture gradients in the x and y directions, HOG is used to extract features. This is done by calculating the gradient's 

magnitude and orientation, binning orientations into histograms, and performing block normalization. HOG 

characteristics are employed for classification via a SVM, which identifies suitable hyperplanes to distinguish seed 

classes. Two optimization strategies are used to enhance model performance: k-fold cross-validation is used to assess 

model stability, and grid search is used to tune hyperparameters. Finally, measures like accuracy, precision, recall, F1-

score, and confusion matrix are used to evaluate the model's efficacy.  

 

Figure 1. The proposed method 
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3.1. Histogram of Oriented Gradient (HOG) – Support Vector Machine (SVM) 

Histogram of Oriented Gradient approach is used to extract features by capturing the oriented gradients of picture 

pixels inside of blocks that are localized. In applications such as image recognition and classification, this approach has 

demonstrated remarkable efficacy [26]. A feature vector that enumerates each distinct aspect of a picture is the result of 

the HOG algorithm. More processing of these features is frequently done with techniques such as linear discriminant 

analysis, which usually calls for more observations than features (variables) [27]. In comparison to the original image, the 

resultant feature vector has a substantially smaller dimension, which makes it easier to handle filtering techniques like 

SVM, neural networks, or discriminant analysis. These classification approaches can use the information more effectively 

and efficiently thanks to this reduction in dimensionality [28]. 

Dalal & Triggs [29] first presented the HOG approach in 2005 for the purpose of detecting human bodies. It has now 

gained widespread attention and has been used extensively in applications related to pattern recognition and computer 

vision. HOG extracts characteristics from areas throughout an image grid that are densely sampled in the context of 

human detection algorithms. The next step involves the use of linear SVMs to aggregate and classify these features. 

Studies have shown that HOG features are much more accurate and useful for human detecting tasks than current feature 

sets. Due in part to this accomplishment, HOG has become well-known as a favored descriptor in several computer 

vision and pattern recognition domains. The HOG method quantifies occurrences of gradient orientations within certain 

regions of a picture. HOG generates tiny square cells, typically measuring 9×9 pixels, from the input picture and use 

center differences to produce histograms of gradient or edge direction. These local histograms are contrast-normalized to 

enhance accuracy and improve the stability of HOG under varying illumination conditions. Compared to other 

descriptors such as Scale-Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP), HOG is known for its 

computational efficiency because it is simpler to compute. Several studies have demonstrated that HOG features are good 

descriptors for a range of detection tasks, highlighting their usefulness in computer vision applications. 

Cannabis seeds often exhibit subtle variations in shape and surface texture, which are well-captured by gradient-based 

methods like HOG. HOG effectively encodes the local gradient orientation, which provides a robust descriptor for the 

surface patterns and contours of seeds. HOG is less computationally intensive than many other descriptors such as SIFT. 

It is faster to compute and requires less processing power, which is ideal for working with large datasets like the one used 

here (3,434 seed images). For classifiers like SVM, which have trouble with very high-dimensional data, the approach is 

a suitable fit since it drastically decreases the dimensionality of the feature space while maintaining considerable 

structural information. Originally proposed for human detection [29], HOG has since been applied successfully in 

numerous computer vision tasks, including pattern recognition and object classification. HOG was chosen over 

alternatives like SIFT and LBP because it strikes the best balance between performance, computational cost, and 

suitability for the specific visual patterns found in cannabis seeds. 

Supervised learning, for instance SVM, is applied to both regression and classification tasks. Its main foundation is 

linear classification, which places a strong emphasis on creating a large margin. To find the ideal decision boundary, the 

SVM classifier uses techniques involving linear, polynomial, sigmoid, and radial basis function (RBF). These techniques 

are well-known strategies for solving limited optimization issues. The kernel trick technique used SVM to convert input 

into a higher-dimensional space. SVM can create an ideal boundary between various classes or regression outcomes 

thanks to this modification. SVM essentially uses complex modifications to reliably separate data according to 

predetermined regression targets or class labels [30]. 

3.2. K-Fold Cross Validation and Grid Search 

To improve the models' performance during training, a method known as 10-fold cross-validation is used in this work 

[31]. The network data is divided into 10 separate subgroups via the 10-fold technique. The last subgroup is allocated as 

the test set, and the other nine subgroups are utilized for training the models in each iteration. This method minimizes 

bias by predominantly utilizing data from 10 cycles to train the models. Furthermore, the weights of the convolutional 

layers of the models are adjusted with each iteration, so they enhance the training procedure. The model being examined 

undergoes 10 training cycles following the partitioning of the data into 10 subgroups. The grid search approach has 

enhanced learning accuracy. The grid search approach has the benefit of allowing parallel processing of SVM training 

since they are independent of one another [32]. 

3.3. Datasets 

The cannabis seed collection covers seventeen categories: purple duck, skunk (auto), sour diesel (auto), blackberry 

(auto), ak47 image, cherry pie, gelato, gorilla purple, Tanaosri Kan Daeng Rd1, Tanaosri Kan Kaw Wa1, Hang Kra Rog 

Ku, Hang Kra Rog Phu Phan St1, Hang Suea Sakon Nakhon Tt1, KD, KD_KT, Krerng Ka Via, and Thaistick Foi Thong 

[33]. Figure 2 shows cannabis seeds. The oil content of cannabis seeds typically ranges from 29 to 34 percent by weight 

and can be extracted into a transparent yellow liquid. Among the many uses for cannabis seeds are in cosmetic products 

including lip balms, shampoos, moisturizers, and lotions. Body oils and lipid-enriched lotions contain cannabis seed oil as 
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one of their ingredients [34]. The images were taken with a mobile phone, and the cannabis plants were grown in both 

indoor and outdoor settings. Notably, white was the backdrop used for every image of a cannabis seed. Table 2 shows 

image specification and also, Table 3 shows Cannabis seeds dataset details. 

Table 2. Image specification [33] 

Sr No. Components Details as per vegetable category 

1 Dimension 3024 × 4032 

2 Width 3024 pixels 

3 Height 4032 pixels 

4 Horizontal Resolution 72 dpi 

5 Vertical Resolution 72 dpi 

6 Bit Depth 24 

7 Resolution Unit 2 

Table 3. Cannabis seeds dataset details [33] 

Seed types Total image 

ak47 106 

blackberry (auto) 203 

cherry pie 50 

gelato 327 

gorilla purple 554 

hang kra rog ku 153 

hang kra rog phu phan st1 249 

hang suea sakon Nakhon tt1 192 

kd 49 

kd_kt 147 

krerng ka via 141 

purple duck 151 

skunk (auto) 233 

sour diesel (auto) 327 

tanaosri kan Daeng rd1 157 

tanaosri kan kaw wa1 183 

thaistick foi thong 212 

Total 3,434 

 

Figure 2. Cannabis Seeds [33] 
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3.4. Evaluation Metrics 

Counts of genuine positives, negatives, false positives, and false negatives are often described using binary 

classification assessment metrics using a matrix of sizes 2 [35]. When the model correctly classifies samples, it is known 

as a true positive. Samples that are accurately classified as not belonging to the class are referred to as true negatives. 

False positives and false negatives are indicators of inaccurate predictions; false positives occur when samples are 

incorrectly classified as such, while false negatives occur when the model is unable to identify cases. To achieve optimal 

outcomes, successful designs aim to minimize both false positives and false negatives. We employed many standard 

assessment metrics to comprehensively assess the effectiveness of our proposed technique for identification and 

classification. These include the F1-score, recall, accuracy, and precision. 

1) Accuracy 

The accuracy score reflects how well the model categorized. Accuracy is defined as the proportion of correctly 

predicted samples relative to the total number of data points. The total count of correctly predicted samples over the 

whole collection. Equation 1 is employed to calculate this metric. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (ℎ) =
1

|𝑋|
 ∑ [ℎ(𝑥) = 𝑦]𝑥∈𝑋                           (1) 

2) Precision 

Precision quantifies the ratio of correctly recognized dangerous programs to the total number of instances expected to 

belong to that category. Precision provides information on the classifier's performance in classifying based on 

misclassification, or false-negatives. This statistic illustrates the precision of positive predictions by considering both true 

positives and false positives. When accuracy reaches its maximum, the number of false positives is as low as feasible. 

The precise calculation is found on Equation 2.                                                                            

𝑅𝑒𝑐𝑎𝑙𝑙 (ℎ) =
∑ 𝑡𝑃𝑗

𝑙
𝑗=1

∑ (𝑡𝑃𝑗+ 𝑓𝑛𝑗)𝑙
𝑗=1

                      (2) 

Here, 𝑡𝑝, stands for the number of true-positive identifications, and 𝑓𝑝 for the number of false-positive identifications. 

3)  Recall 

Based on false-positives, recall provides the model's performance efficiency. Recall is also known as the True Positive 

Rate (TPR), which is the proportion of correctly predicted positive cases (true positives) in the dataset that are actual 

positive occurrences. The model's ability to identify each positive event is evaluated. Equation 3 is employed in the 

calculation of recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 (ℎ) =
∑ 𝑡𝑃𝑗

𝑙
𝑗=1

∑ (𝑡𝑃𝑗+ 𝑓𝑛𝑗)𝑙
𝑗=1

                       (3) 

The algorithm model's true-positive identification count is denoted by 𝑡𝑝, while its false-negative identification count 

is denoted by 𝑓𝑛. 

4) F1-score 

Using precision and recall, the weighted average of precision and recall, the F1 score yields an efficiency score for the 

model. Equation 4 provides a balanced evaluation of a model's classification abilities by computing the harmonic median 

of recall and accuracy, which is the basis for the F1 score. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 × 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                                  (4) 

5) Confusion Matrix 

In binary and multi-class contexts, the confusion matrix is an essential tool for evaluating the performance of a 

classification model. It provides essential metrics such as recall, accuracy, and precision. 

4. Results and Discussion  

4.1. SVM Classifier 

Histogram of Oriented Gradients features are derived by calculating orientation histograms of edge intensities in 

localized segments of an image. They are especially proficient in differentiating the 17 cannabis seed classes, since 

they effectively encode both shape and texture, exhibit resilience to illumination fluctuations, and capture the unique 

structural patterns of many seed kinds. The HOG characteristics are taken from a dense grid throughout the picture and 

classified using a linear SVM in the object identification process. SVMs are supervised learning models that fall 
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within the generalized linear classifier family and are used for both regression and classification. By maximizing the 

geometric margin between classes and minimizing empirical classification error, they function according to the 

maximum margin classification principle. According to Structural Risk Minimization (SRM), SVMs transform input 

vectors into a higher-dimensional space to establish a maximum separation hyperplane. To improve generalization 

performance, two parallel hyperplanes are placed on either side of this decision boundary. The ideal hyperplane 

maximizes the distance between them. The SVM classifier attained an accuracy rate of 94.11% in this investigation. 

The SVM classifier's training results are shown in Table 4, and the associated confusion matrix and training and test 

dataset comparison are displayed in Figure 3. 

Table 4. Results for training SVM Classifier 

 Precision Recall F1-Score Support 

0 0.92 0.71 0.80 17 

1 0.89 0.66 0.76 50 

2 1.00 1.00 1.00 57 

3 0.95 1.00 0.98 79 

4 1.00 1.00 1.00 98 

5 1.00 0.96 0.98 26 

6 0.97 0.99 0.98 70 

7 0.50 0.38 0.43 13 

8 0.83 0.96 0.89 93 

9 0.94 0.97 0.95 152 

10 1.00 1.00 1.00 36 

11 0.94 0.92 0.93 84 

12 0.92 0.94 0.93 50 

13 1.00 1.00 1.00 56 

14 0.98 0.94 0.96 51 

15 0.90 0.96 0.93 46 

16 0.95 0.87 0.91 23 

 

Figure 3. SVM classifier 

4.2. Optimizing SVM classifiers with K-Fold Cross Validation (K=10) and Grid Search 

The results of improving the SVM Classifier using Grid Search and K-Fold Cross Validation (K=10) are displayed in 

Table 5. The confusion matrix for SVM Classifier optimization using K-Fold Cross Validation (K=10) is displayed in 

Figure 4(a). To optimize the SVM Classifier using K-Fold Cross Validation (K=10), Figure 4(b) displays the training vs 

test results. The accuracy of the first, second, third, fourth, fifth, sixth, seventh, eighth, and tenfold folds is 94.01%, 

94.91%, 94.91%, 94.31%, 93.41%, 94.01%, 92.79%, 95.20%, 93.69%, and 93.69%, respectively. The confusion matrix 

used to optimize the SVM classifier using grid search is displayed in Figure 4(c). The training and test results for 

improving the SVM Classifier using Grid Search are displayed in Figure 4(d). By using Grid Search to optimize the SVM 

Classifier, we get an accuracy rating of 93.91%. 
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Table 5. Result for optimizing SVM Classifier with K-Fold Cross Validation (K=10) and Grid Search 

 
K-Fold Cross Validation (K=10) Grid Search 

Precision Recall F1-Score Support Precision Recall F1-Score Support 

0 1.00 1.00 1.00 4 0.92 0.71 0.80 17 

1 0.86 0.80 0.83 15 0.89 0.66 0.76 50 

2 1.00 1.00 1.00 15 1.00 1.00 1.00 57 

3 0.92 0.96 0.94 24 0.95 1.00 0.98 79 

4 1.00 1.00 1.00 32 1.00 1.00 1.00 98 

5 1.00 0.91 0.95 11 1.00 0.96 0.98 26 

6 1.00 1.00 1.00 20 0.97 0.99 0.98 70 

7 0.50 0.20 0.29 5 0.57 0.31 0.40 13 

8 0.91 0.88 0.89 33 0.84 0.95 0.89 93 

9 0.90 0.98 0.94 55 0.91 0.98 0.94 152 

10 1.00 1.00 1.00 16 1.00 1.00 1.00 36 

11 1.00 0.83 0.91 24 0.95 0.92 0.93 84 

12 0.75 0.94 0.83 16 0.92 0.94 0.93 50 

13 1.00 1.00 1.00 21 1.00 1.00 1.00 56 

14 0.90 1.00 0.95 19 0.98 0.92 0.95 51 

15 1.00 0.93 0.96 14 0.88 0.93 0.91 46 

16 1.00 0.89 0.94 9 1.00 0.87 0.93 23 

 

Figure 4. Optimizing SVM classifier 
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5. Conclusion 

The classification of cannabis seeds in Thailand has been created in this study, which uses grid search and SVM 

optimization based on HOG feature extraction with k-fold cross validation to classify 17 classes of cannabis seed photos 

with high accuracy. A dataset of cannabis seeds, including 3,434 photos, was created, with images sourced from cannabis 

seeds of diverse types under varying brightness and surface conditions. Simultaneously, four assessment metrics were 

compared: Precision, Recall, F1 Score, and Accuracy. The algorithm effectively recognized the target items, achieving 

accuracy rates of 94.11% for the SVM Classifier, 94% for the SVM Classifier with K-Fold Cross Validation (K=10), and 

93.91% for the SVM Classifier with Grid Search. The enhanced HOG feature extraction-based SVM optimization 

utilizing k-fold cross-validation and grid search may get precise categorization of cannabis seeds from Thailand. Our 

findings indicate that HOG SVM, with k-fold cross-validation and grid search, is an effective method for the precise 

categorization of cannabis seed types, with potential for future enhancement. 
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