
 

 

 

 

 

 
 ISSN: 2785-2997  

Available online at www.HEFJournal.org  

Journal of  

Human, Earth, and Future 

Vol. 6, No. 2, June, 2025 

 

  

474 

Integrating Satellite and UAV Imagery for Mangrove Aboveground 

Biomass and Carbon Stock Modeling 

 

Sinlapachat Pungpa 1 , Krisanadej Jaroensutasinee 2* , Mullica Jaroensutasinee 2 , 

Wacharapong Srisang 3 , Sirilak Chumkiew 1* , Elena B. Sparrow 4  

1 School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, 30000, Thailand. 

2 Center of Excellence for Ecoinformatics, Walailak University, Nakhon Si Thammarat, 80160, Thailand. 

3 Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, 52000, Lampang, Thailand. 

4 Department of Natural Resources and Environment, University of Alaska Fairbanks, AK, United States. 

Received 26 March 2025; Revised 11 May 2025; Accepted 17 May 2025; Published 01 June 2025 

Abstract 

This study aimed to: (1) quantify aboveground biomass (AGB) and carbon (AGC) stocks in the Banlaem mangrove 

forest, Nakhon Si Thammarat, Thailand; and (2) construct an AGB estimation model using vegetation indices (VIs) 

derived from Sentinel-2, Landsat-8, and unmanned aerial vehicle (UAV) imagery. On-the-ground measurements were 

carried out to evaluate the AGB and AGC stocks of the mangrove forest. VIs were then calculated using passive 

remote sensing data, including satellite and UAV imagery. These indices were compared through multiple regression 

analysis with the ground-truthed AGB for evaluation. Three mangrove species were found: Rhizophora mucronata, 

R. apiculata, and Avicennia Marina. Overall, the AGB and AGC stocks ranged from 0 to 179.78 tons•ha¹ (56.30 ± 

51.81 tons•ha¹) and 0 to 89.89 tons•ha¹ (28.15 ± 25.90 tons•ha¹), respectively. The best AGB model exhibited an R² 

of 0.73 and an RMSE of 22.0 tons•ha¹. This study presents a novel approach for estimating AGB and AGC stocks in 

the Thai mangrove ecosystem by integrating a UAV with two open-access satellite imagery sources. Combining 

multiple VIs (NDVI, SAVI, and GNDVI) with CHM provides better accuracy for the mangrove AGB estimation 

model than using a single variable. 

Keywords: Aboveground Biomass; Carbon Stock; Mangrove; Remote Sensing; Vegetation Index. 

 

1. Introduction 

Blue carbon ecosystems play a vital role in capturing and storing carbon, supporting coastal and marine 

biodiversity, and acting as natural barriers against shoreline erosion, severe weather, pollution, and rising sea levels 

[1]. Among these, mangroves stand out due to their exceptional ability to store carbon over long periods and 

contribute significantly to lowering greenhouse gas concentrations and atmospheric CO₂ [1]. They are also the most 

comprehensively studied in terms of carbon dynamics, with estimates indicating that globally, mangrove ecosystems 

sequester around 700 million tons of carbon annually via gross primary production [2]. Their high rate of carbon 

absorption through photosynthesis underscores their importance in mitigating climate change, highlighting the need 

for consistent monitoring [3]. 
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Sustainable management of mangrove blue carbon relies on the effective measurement, mapping, and 

monitoring of mangrove forests [4]. Few studies have focused on their carbon estimation, primarily due to 

challenges associated with technical limitations and the shortcomings of traditional methods. These challenges 

include financial, work crews, time consumption, and data inventory processing constraints [5]. In addition, due to 

the challenging accessibility of mangrove habitats, most studies are confined to small areas and rely on a limited 

number of field samples [6]. These constraints underscore the need for improved methods to assess mangrove 

carbon. 

Remote sensing (RS) provides methods for accurately estimating carbon in mangrove forests, thereby eliminating 

the difficulties associated with conventional techniques. Conventional methods depend solely on field surveys for 

estimation, with their effectiveness restricted to small-scale areas [7]. In contrast, remotely sensed research studies 

offer a way to overcome the challenges of conducting fieldwork, mainly through passive RS, which is cost-effective 

and easy to interpret while providing a wealth of information [8]. Satellite-based research is becoming increasingly 

widespread due to the growing accessibility of satellite data, improved image resolution, time-series datasets, and 

reduced time and computational costs [9]. However, unmanned aerial vehicles (UAVs) can carry multiple sensors, 

enabling the collection of diverse data types at varying resolutions [10]. VIs can show a strong correlation with 

mangrove aboveground biomass (AGB), as demonstrated by models achieving R² values of 0.81 using Sentinel-2 [11] 

and 0.90 using Landsat-8 [5]. Developing RS approaches is necessary for estimating mangrove biomass, particularly 

in large-scale areas and inaccessible areas. 

Between 1989 and 2020, the Lower Mekong Region (LMR), which includes Myanmar, Thailand, Cambodia, and 

Vietnam, saw a dramatic increase in mangrove area. During this time period, Thailand, a Southeast Asian country, 

became a significant contributor to the region's mangrove forest wealth by substantially increasing mangrove cover 

from 339,613 ha to 601,642 ha [12]. To date, only one study has utilized remote sensing techniques to estimate 

mangrove carbon stocks in Thailand. Specifically, GeoEye-1 imagery and ASTER GDEM data were employed to 

assess mangrove carbon along the Andaman Coast [13]. The majority of research in Thailand has relied on 

conventional field-based approaches for estimating mangrove carbon storage [14, 15]. In Nakhon Si Thammarat, for 

instance, traditional measurement methods have also been employed [16]. In contrast, studies across Southeast Asia 

have demonstrated the efficacy of remote sensing for estimating mangrove carbon [7, 17-19]. These findings 

underscore the need to develop advanced methods for estimating mangrove carbon in Thailand, a country 

experiencing a rise in mangrove cover. 

The Banlaem mangrove forest, situated in the Banlaem community of Nakhon Si Thammarat, southern Thailand, is 

a promising carbon sink that warrants careful consideration. From the personal interview with the community tourism 

coordinator in the community, the area experienced an ecological shift from a sandy beach to a muddy soil wetland 

approximately 30 to 40 years ago (1984–1994); following this change, several diverse mangrove planting initiatives 

have been carried out by the introduction of loop-root mangroves (Rhizophora mucronata), which promoted the rapid 

expansion of the mangrove ecosystem. However, regarding carbon assessment efforts, this community lacks 

quantitative data on carbon storage, which would be important in impact assessments and monitoring efforts in this 

mangrove area.  

To fill the gaps, this work aimed to (1) assess AGB and AGC stock in the Banlaem mangrove forest, Nakhon Si 

Thammarat, Thailand, and (2) develop models using VIs from satellites (Sentinel-2, Landsat-8) and a UAV to 

investigate both AGB and AGC stock. Moreover, this study is the first to examine the biodiversity in the Banleam 

mangrove forest. We conducted the ground truth assessment to establish the baseline AGB and AGC stock for 

validation against the RS data. A model for estimating biomass and carbon was developed using regression analysis. 

The findings provide a tool for estimating carbon storage in the Banlaem mangrove forest, enabling land managers to 

make informed decisions about harvesting, tree planting, and habitat preservation in this area, thereby promoting 

community engagement in sustainable management and carbon offset projects. 

2. Material and Methods 

2.1. Methodology 

The details of the study's methodology are shown in Figure 1. We collected data from both ground measurements 

and remote sensing (RS) sources. We recorded information regarding mangrove trees and their biodiversity indices 

factor. RS data, including Landsat-8, Sentinel-2, and UAV imagery, were processed to generate vegetation indices 

(VIs) and a canopy height model (CHM), which were then used in regression analysis to develop mangrove AGB 

models. Finally, statistical methods were employed to evaluate the performance of the models. 
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Figure 1. Methodology of this study 

2.2. Study Site 

The Banlaem mangrove forest (8°36'32.7" N, 99°57'59.0" E) is geographically located in the Banlaem community, 

Nakhon Si Thammarat Province, Southern Thailand, in a tropical region (Figure 2). The entire study site covers 123.5 

ha, designated as an ecotourism zone. The R. mucronata is the only species intentionally planted in the Banlaem 

mangrove forest. To grow, propagules from R. mucronata are placed in muddy soil, with each propagule spaced 1.0-

1.5 m apart and inserted to a depth of 15-20 cm. However, observations in this study indicated that another species (A. 

marina) dominates the upland areas as an interior species, while R. mucronata primarily occupies the peripheral zones 

(edge species). In Southern Thailand, the average annual rainfall ranges from 1,200 to 4,500 mm, with higher amounts 

recorded on the windward side compared to the leeward side. The mean temperature is 27.5°C [20]. 

 

Figure 2. Study area: (a) Thailand map, (b) Nakhon Si Thammarat province, Southern Thailand, and (c) study plots 

arrangements in the study site (Banlaem mangrove forest) 

2.3. Ground Truth Data Collection 

Line transect plot configurations were established to assess the AGB and AGC stocks within the Banlaem 

mangrove forest, for the study period of April 2023 to July 2024. The study plot design followed Kauffman and 

Donato’s protocol [21]. Six circular plots (7 m radius) per line transect yielded 36 total plots (plots 1–36). 

Additionally, square plots (1 × 1 m²) were established for mangrove seedling assessments, designated as plots 37–48. 

In total, 48 sampling plots were used in the study (Figure 2a-b). The location and dimensions of the studied plots were 

restricted due to the challenges of accessing the mangrove areas. At each plot, data on mangrove tree scientific names, 

DBH (≥5 cm [22]), tree density, and basal area (BA) were determined. Species were identified using a handbook [23] 
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and expert consultation. Unique tree codes and all data were documented on collection forms. A species-specific 

allometric equation, Equation 1, was applied [24] to estimate the AGB. A wood density (𝜌) was derived from the 

Global Wood Density Database [25].  

𝐴𝐺𝐵 (𝑘𝑔) = 0.25 × 𝜌 (𝑔/𝑐𝑚3) × 𝐷𝐵𝐻2.46                                                                                                                  (1) 

where: DBH (cm) at 0.3 m above prop roots (Rhizophoraceae). The AGC stock is estimated to be 50 percent of the 

biomass [26]. Understory vegetation, seedlings, and herb carbon were not included in the analysis due to their minimal 

contribution to mangrove ecosystem carbon storage [21, 27].  

Furthermore, this study calculated the diversity indices for the mangrove tree species in the Banlaem mangrove 

forest. Biodiversity was measured using the Shannon-Weiner Index (H) and Simpson’s Index (1-D). The value of H 

varies among sampling plots and is influenced by species richness (S). The Evenness Index (J) was utilized to measure 

species dominance. Equations 2, 3, and 4 illustrate the calculations for H, D, and J, respectively [28, 29]. 

𝐻 =  − ∑ 𝑝𝑖 ×𝑙𝑛 𝑙𝑛 𝑝𝑖
𝑆
𝑖=1                                                                                                                                                  (2) 

where pi represents the proportion of individuals of species i, and ln denotes the natural logarithm. The value of H 

varies between 0 and Hmax. A higher H value indicates greater diversity. 

𝐷 =  ∑ (
𝑛𝑖

𝑁
)2𝑠

𝑖=1                                                                                                                                                                  (3) 

where ni is the count of individuals of species i, and N is the total individual count, 1-D ranges from 0 to 1. A value of 

1 indicates maximum diversity, and 0 means no diversity. 

𝐽 =
𝐻

𝐻𝑚𝑎𝑥
                                 (4) 

The value of J varies between 0 and 1. A low J value indicates that one or a few species dominate the study plots. 

2.4. Remote Sensing Data Collection 

This study utilized data from two open-access satellites, Sentinel-2 and Landsat-8 (Table 1). Sentinel-2B Level 2A 

imagery (MSI, atmospherically corrected surface reflectance) was downloaded from the ESA's Sentinel Scientific 

Data Hub. Landsat-8 Collection 2 Level 2 imagery (atmospherically corrected surface reflectance) was downloaded 

from the United States Geological Survey (USGS). Images were selected based on minimal cloud cover (Landsat-8: 

3.16%, Sentinel-2: 5.65%) and their temporal closeness to the ground data collection dates. 

The study also incorporated UAV imagery captured using a DJI Mavic 2 Enterprise Advanced, equipped with 

visible and near-infrared (Vis/NIR) cameras. UAV imagery was captured during ground truth data collection (on 28 th 

April 2023 and 15th July 2024). The frontal overlap, side lap, and flight height were set to 80%, 70%, and 90 m, 

respectively. The spatial resolution (GSD) was 1.48 cm/pixel. The UAV imagery was processed in Pix4Dmapper 

(version 4.8.4) to produce an orthomosaic image, a digital terrain model (DTM), and a digital surface model (DSM). 

The imagery was calibrated using Pix4D photogrammetric processing, which optimized both internal and external 

camera parameters. Canopy Height Model (CHM) was generated in QGIS using photogrammetry-derived data by 

subtracting the DTM from the DSM. This value represents the measured vegetation height above the ground [30]. This 

calculation was performed using the raster calculation tool in Quantum GIS (version 3.34.1-Prizren). In addition to 

VIs, this study included the CHM from the UAV as an additional variable for developing the AGB model in the 

Banlaem mangrove forest. 

Table 1. Landsat-8 and Sentinel-2 Satellite image codes, date, and resolution 

No. Image Codes Date Resolution (m) Remarks 

1 LC08_L2SP_129054_20230331_20230405_02_T1_SR_B3 31/03/2023 30 Landsat-8 

2 LC08_L2SP_129054_20230331_20230405_02_T1_SR_B4 31/03/2023 30 Landsat-8 

3 LC08_L2SP_129054_20230331_20230405_02_T1_SR_B5 31/03/2023 30 Landsat-8 

4 S2B_MSIL2A_20230312T033539_N0509_R061_T47PPK__B03_10m 12/03/2023 10 Sentinel-2 

5 S2B_MSIL2A_20230312T033539_N0509_R061_T47PPK__B04_10m 12/03/2023 10 Sentinel-2 

6 S2B_MSIL2A_20230312T033539_N0509_R061_T47PPK__B08_10m 12/03/2023 10 Sentinel-2 

2.5. Vegetation Index Calculation 

To develop aboveground biomass (AGB) models for the Banlaem mangrove forest (Table 2), three vegetation 

indices (VIs) were calculated using the raster calculation tool in Quantum GIS (version 3.34.1-Prizren). The resulting 

VIs were subsequently integrated with ground-truth AGB, which was derived from allometric equations, to construct 

the AGB estimation model. 
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Table 2. The equations of the VIs used for the development of the mangrove AGB model 

No. Vegetation Indices Equations References 

1 NDVI (normalized difference vegetation index) 𝑁𝐷𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
)                                                (5) [31] 

2 SAVI (soil-adjusted vegetation index) 𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
) × (𝐿 + 1)                      (6) [32] 

3 GNDVI (green normalized difference vegetation index) 𝐺𝑁𝐷𝑉𝐼 = (
𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
)                                       (7) [33] 

Where: L – soil brightness correction factor (0.5), GREEN – green wavelength, RED – red wavelength, NIR – near-infrared wavelength 

2.6. AGB Model Development and Validation 

Linear and multiple linear regression models were analyzed and developed to predict mangrove AGB using Jamovi 

2.6.2. The ground AGB was used as the dependent variable, while NDVI, SAVI, GNDVI, and CHM were considered 

independent variables for estimating AGB in the Banlaem mangrove forest. The most accurate models were validated 

based on the correlation coefficient (R), coefficient of determination (R2), probability value (p-value), root mean 

square error (RMSE), and residual plots. However, this study excluded specific plots (plots 13-18) from the AGB 

model development due to the UAV's inaccessibility to those areas. Mangrove seedling plots (37–48) were excluded 

from the regression analysis due to distinct linear patterns in their residuals and differing plot sizes relative to the other 

plots, which exhibited random patterns indicating a good model fit to the linear model. Additionally, their varying plot 

sizes may have introduced variability in the independent variables, leading to their exclusion as outliers.  

3. Results 

3.1. Ground Truth Records, Biodiversity, and Carbon Stock 

We made ground observations and measurements from April 2023 to July 2024 in the Banlaem mangrove forest, 

Nakhon Si Thammarat, Thailand. Species occurrences, tree records (including density, DBH, and BA), and 

biodiversity indices are presented in Table 3. Regarding the species occurrence, we found only a few species in this 

study area. These included mangrove trees from the family Rhizophoraceae, genus Rhizophora (R. mucronata and R. 

apiculata), and the family Acanthaceae, genus Avicennia (A. marina), totalling three species (Figure 3 a-c). A. marina 

was the dominant species, which can be found in every plot (for mature mangroves). We categorized the mangrove 

trees into three distinct composition types: (1) a mixture of grey mangrove (A. marina) and loop-root mangroves 

(Rhizophora spp.), observed in plots 1, 2, 7, 13–22, and 31–36; (2) A. marina, found in plots 3–6, 8–12, and 23–30; 

and (3) predominantly seedlings, with R. mucronata being dominant in plots 37–48. The overall density was 

4,386±4,732 mangrove trees  ha-1 with the mean DBH and BA of 6.32±3.84 cm and 8.76±7.40 m2  ha-1, respectively. 

In general, the Rhizophora spp. appeared to function as edge species, predominantly distributed along the boundaries 

of upland areas, whereas A. marina was more commonly found in the interior. However, within the study plots, 

Rhizophora spp. frequently co-occurred with A. marina. Rhizophora spp. and did not occur alone, except in the small-

mangrove (seedlings) plot group. In contrast, some plots consisted solely of A. marina. 

   
(a) (b) (c) 

Figure 3. The mangrove tree species found in the study area include (a) Rhizophora apiculata, (b) Rhizophora mucronata, 

and (c) Avicennia marina 

The mangrove tree data showed that seedlings had a higher tree density than mature trees. The overall density of 

mature trees was 1,959±1,034.31 mangrove trees  ha-1. The density varied depending on the composition of mangrove 
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tree species. In contrast, seedlings had an overall density of 11,667±3,892.49 mangrove trees  ha-1, which was higher 

than that of the mature trees. The mean DBH and BA in the mature tree were 8.43±1.23 cm and 11.68±6.20 m2  ha-1, 

respectively. Seedlings had a height of less than 1.30 m, resulting in the mean DBH and BA of 0 cm and 0 m2  ha-1, 

respectively. This study also revealed aspects of biodiversity in the Banlaem mangrove forest. The species richness in 

the Banlaem mangrove forest was three. Overall, the biodiversity indices indicated the limited biodiversity in this area. 

For the mature mangrove trees, the 1-D index was 0.15±0.18, indicating that the presence of dominant species resulted 

in limited species diversity. The H index was 0.23±0.27, indicating that only a small number of species were found. 

The J index was 0.33 ± 0.38, indicating low species evenness within the community. However, for the seedlings, all 

indices had a value of 0 because only a single species was found in each plot. 

The AGB and AGC stocks in the Banlaem mangrove ecosystem varied across the study plots (Figure 4). Overall, 

the AGB and AGC stocks ranged from 0 to 179.78 (56.30±51.81) and 0 to 89.89 (28.15±25.90) ton  ha-1, respectively. 

Mature mangroves (plots 1–36) had higher AGB and AGC stocks compared to the seedlings (plots 37–48). The 

highest AGC stock was recorded in the plot with the largest mean DBH (plot 16, DBH = 11.62±2.52 cm), where A. 

marina and R. mucronata coexisted. In contrast, the mangrove seedlings along the seafront had a DBH ≤5 cm, which 

was considered negligible in terms of carbon stock. Therefore, the AGB and AGC stocks of seedlings were both 0 ton
 ha-1. Mature mangroves (with DBH ≥5 cm) were compared in terms of their AGB and AGC stocks based on species 

composition (Figure 5a, b). Overall, species composition significantly influenced AGB and AGC stocks in the 

Banlaem mangrove forest. The coexistence of A. marina and Rhizophora spp. resulted in high AGB (43.4–180; mean 

± SD: 108 ± 33.5 ton  ha-1) and AGC (21.7–89.9; 53.8 ± 16.7 ton  ha-1) stocks. These values were significantly higher 

than those recorded in A. marina-only plots (t34 = -6.68, P< 0.001), which had an AGB of 3.2–102 (38.6±27.9) ton  

ha-1and AGC stock of 1.6–51.0 (19.3±14.0) ton  ha-1. The higher wood density of the Rhizophora spp. (R. mucronata 

= 0.82 g/cm3; R. apiculata = 0.85 g/cm3) likely contributes to the higher AGB compared to the lower wood density of 

the A. marina (0.65 g/cm3). 

 

Figure 4. The AGB (red bar) and AGC (green bar) stocks in each study plot of the Banlaem mangrove forest 

3.2. Model Development and Validation 

Regression models for estimating mangrove AGB and AGC were developed using UAV and satellite data, various 

vegetation indices, and CHM data (Table 4). Overall, combining multiple indices (NDVI, SAVI, GNDVI) and CHM 

significantly improved model accuracy (R²: 0.147–0.729; RMSE: 22.0–29.0 ton  ha-1) compared to single-index 

models (R²: 0.070–0.177; RMSE: 38.3–40.7 ton  ha-1). For the UAV data, NDVI was the most effective single index 

(R²: 0.108; RMSE: 32.2 ton  ha-1). For Sentinel-2 data, NDVI, SAVI, and GNDVI showed equal performance as the 

most effective single indices (R²: 0.177; RMSE: 38.3 ton  ha-1). For Landsat-8, NDVI was the most effective single 

index (R²: 0.108; RMSE: 39.9 ton  ha-1). Additionally, the use of the vertical variable (CHM) resulted in lower 

accuracy compared to the VIs. NDVI was the most effective single variable for estimating mangrove AGB across all 

tested platforms. However, this study suggests incorporating multiple variables for AGB prediction in the Banlaem 

mangrove forest, as they provided the highest accuracy across all tested platforms. 
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The type of equipment also influenced the accuracy of the AGB models (Figure 6). Scatter plots generated from 
the best model for each platform showed that the model achieved the highest accuracy, no. 14 (R² = 0.729, RMSE = 
22.0 ton*ha¹, P < 0.001), which combined vegetation indices (NDVI, SAVI, and GNDVI) from both Landsat-8 and 

Sentinel-2 with CHM data from the UAV. Among the single-platform models, the UAV proved to be the most 
effective. The UAV achieved the highest accuracy among single-platform models in model no.5 (R2 = 0.577, RMSE = 
27.5 ton  ha-1, P< 0.001), followed by the Sentinel-2 in model no.9 (R2 = 0.529, RMSE = 29.0 ton  ha-1, P< 0.001), 
and Landsat-8 in model no.13 (R2 = 0.174, RMSE = 38.0 ton.ha-1, P< 0.05). Overall, integrating multiple platforms 
and variables significantly improved the accuracy of the mangrove above-ground biomass (AGB) model in the 
Banlaem mangrove forest. In addition, residual plots were constructed to confirm the linearity of the models 

developed in this study (Figure 7). The most accurate models for all the tested platforms (UAV, Sentinel-2, Landsat-8, 
and the integrated system) showed that residuals were randomly distributed around the horizontal line (y-axis = 0). 
Therefore, these findings suggest that a linear relationship between the independent and dependent variables is 
sufficient for this study, thereby eliminating the need to explore non-linear modeling approaches. 

Table 3. The ground data and biodiversity indices in the Banlaem mangrove forest 

  Mature Trees    

Plot 
Species Occurrence Tree Density 

(No.* ha-1) 

Mean DBH 

(cm) 

BA 

(m2.ha-1) 

Diversity Index 

R. mucronata R. apiculata A. marina 1-D H J 

1 ✔ × ✔ 4,355 7.61 21.42 0.49 0.69 0.99 

2 ✔ × ✔ 2,535 8.64 16.16 0.14 0.27 0.39 

3 × × ✔ 1,690 7.61 8.02 0.00 0.00 0.00 

4 × × ✔ 2,015 7.83 10.28 0.00 0.00 0.00 

5 × × ✔ 3,250 7.28 14.34 0.00 0.00 0.00 

6 × × ✔ 3,770 8.07 12.08 0.00 0.00 0.00 

7 ✔ × ✔ 2,340 7.17 13.72 0.24 0.34 0.49 

8 × × ✔ 2,340 7.17 10.81 0.00 0.00 0.00 

9 × × ✔ 1,300 6.27 6.01 0.00 0.00 0.00 

10 × × ✔ 845 6.55 3.65 0.00 0.00 0.00 

11 × × ✔ 780 6.79 3.27 0.00 0.00 0.00 

12 × × ✔ 1,365 6.85 5.51 0.00 0.00 0.00 

13 ✔ × ✔ 2,665 7.89 13.34 0.05 0.11 0.17 

14 ✔ × ✔ 3,055 8.58 19.01 0.12 0.24 0.34 

15 ✔ × ✔ 2,340 9.44 17.85 0.15 0.29 0.41 

16 ✔ × ✔ 2,015 11.62 22.33 0.27 0.44 0.64 

17 ✔ × ✔ 1,430 10.41 13.17 0.50 0.69 1.00 

18 ✔ × ✔ 1,950 9.26 14.43 0.44 0.64 0.92 

19 ✔ × ✔ 3,965 8.57 23.64 0.06 0.14 0.21 

20 ✔ × ✔ 2,795 8.53 16.68 0.30 0.48 0.69 

21 ✔ × ✔ 2,210 8.35 13.34 0.46 0.65 0.94 

22 ✔ × ✔ 1,690 9.13 11.48 0.20 0.36 0.52 

23 × × ✔ 2,080 8.26 11.69 0.00 0.00 0.00 

24 × × ✔ 2,145 7.15 8.67 0.00 0.00 0.00 

25 × × ✔ 1,690 10.50 15.72 0.00 0.00 0.00 

26 × × ✔ 455 9.71 3.48 0.00 0.00 0.00 

27 × × ✔ 260 9.12 1.37 0.00 0.00 0.00 

28 × × ✔ 455 7.98 2.37 0.00 0.00 0.00 

29 × × ✔ 390 8.70 2.58 0.00 0.00 0.00 

30 × × ✔ 130 7.64 0.60 0.00 0.00 0.00 

31 ✔ × ✔ 3,315 8.52 19.31 0.04 0.10 0.14 

32 ✔ × ✔ 1,755 8.83 11.74 0.35 0.53 0.76 

33 ✔ × ✔ 2,210 9.02 15.15 0.42 0.61 0.87 

34 ✔ ✔ ✔ 1,820 10.53 17.06 0.30 0.56 0.81 

35 ✔ ✔ ✔ 1,430 8.08 7.60 0.24 0.49 0.70 

36 ✔ × ✔ 1,690 9.89 12.64 0.50 0.69 1.00 

Mean 

SD 

1,959 8.43 11.68 0.15 0.23 0.33 

1,034.31 1.23 6.20 0.18 0.27 0.38 
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Seedlings 

Plot 
Species Occurrence Tree Density 

(No.* ha-1) 

Mean DBH 

(cm) 

BA 

(m2. ha-1) 

Diversity Index 

R. mucronata R. apiculata A. marina 1-D H J 

37 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

38 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

39 ✔ × × 20,000 0.00 0.00 0.00 0.00 0.00 

40 × × ✔ 10,000 0.00 0.00 0.00 0.00 0.00 

41 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

42 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

43 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

44 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

45 × × ✔ 10,000 0.00 0.00 0.00 0.00 0.00 

46 ✔ × × 20,000 0.00 0.00 0.00 0.00 0.00 

47 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

48 ✔ × × 10,000 0.00 0.00 0.00 0.00 0.00 

Mean 11,667 0.00 0.00 0.00 0.00 0.00 

SD 3,892.49 0.00 0.00 0.00 0.00 0.00 

Table 4. The AGB model development in this study 

Equipment Variable 
Model 

No. 
Equation R R2 p-value 

RMSE        

(ton.ha-1) 

UAV 

NDVI 1 AGB = 58.5+51.7(NDVI) 0.329 0.108 0.08 39.2 

SAVI 2 AGB = 58.5+34.5(SAVI) 0.329 0.108 0.08 39.9 

GNDVI 3 AGB = 60.8+46.4(GNDVI) 0.301 0.091 0.11 40.3 

CHM 4 AGB = 35.05+5.68(CHM) 0.265 0.070 0.16 40.7 

NDVI, SAVI, 

GNDVI, CHM 
5 

AGB = -51.68+5.53 (CHM) -40,122.32 (NDVI)+ 

28,315.69 (SAVI) -2,185.20(GNDVI) 
0.759 0.577 <0.001 27.5 

Sentinel-2 

NDVI 6 AGB = -200+518(NDVI) 0.420 0.177 <0.05 38.3 

SAVI 7 AGB = -200+345(SAVI) 0.420 0.177 <0.05 38.3 

GNDVI 8 AGB = -200+345(GNDVI) 0.420 0.177 <0.05 38.3 

NDVI, SAVI, 

GNDVI 
9 

AGB = -207+523,714(NDVI)- 

351,237(SAVI)+4,084(GNDVI) 
0.727 0.529 <0.001 29.0 

Landsat-8 

NDVI 10 AGB = 58.5+51.7(NDVI) 0.329 0.108 0.12 39.9 

SAVI 11 AGB = 219-318(SAVI) 0.292 0.085 0.12 40.4 

GNDVI 12 AGB = 223-545(GNDVI) 0.291 0.085 0.12 40.4 

NDVI, SAVI, 

GNDVI 
13 

AGB = 237-4.25×10-7(NDVI)+ 2.83×10-7                    

(SAVI)-726 (GNDVI) 
0.417 0.174 <0.05 38.4 

Combination 

(UAV+Sentine

l-2+Landsat-8) 

All variables 14 

AGB = 243.04+4.63(CHM)-41,111.90(UAV-NDVI) 
+28,836.37(UAV-SAVI)- 2,086.54(UAV-GNDVI)-

1.23×10-7(Sentinel2-NDVI) +8.19×106 (Sentinel2-

SAVI) + 2.33×108(Landsat8-NDVI)- 1.55×10-8 

(Landsat8-SAVI)+2,098.77(Landsat8-GNDVI) 

0.854 0.729 <0.001 22.0 

 

  
(a) (b) 

Figure 5. The boxplots of (a) the AGB (tons/ha) and (b) AGC stock (tons/ha) in the Banlaem mangrove are based on tree 

composition 
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Figure 6. The most accurate AGB model in each equipment: (a) UAV, (b) Sentinel-2, (c) Landsat-8, and (d) combination 

(UAV+Sentinel-2+Landsat-8) 

  

  

Figure 7. Residual plots of the AGB models in the most accurate AGB model in each equipment: (a) UAV, (b) Sentinel-2, 

(c) Landsat-8, and (d) combination (UAV+Sentinel-2+Landsat-8) 

(a) (b) 

(c) (d) 

(b) (a) 

(c) (d) 



Journal of Human, Earth, and Future         Vol. 6, No. 2, June, 2025 

483 

4. Discussion 

4.1. Mangrove Biomass and Carbon Stock 

This study provides the first assessment of the AGB, AGC stock, and diversity in the Banlaem mangrove forest in 

Nakhon Si Thammarat, southern Thailand. With its species richness (richness = 3), the findings indicate a relatively 

low diversity among mangrove tree species compared to other studies conducted in planted mangrove ecosystems 

within Thailand. R. mucronata was the only species planted in Banlaem, while it is evident that propagules of other 

species were dispersed by the tidal currents [19]. A survey of the Ranong Biosphere Reserve (RBR) in Ranong 

province, southern Thailand, revealed the presence of four mangrove species, belonging to three genera: Rhizophora, 

Bruguiera, and Ceriops [14]. Mangrove DBH was significantly higher in the RBR (15.12 ± 7.34 cm) than in the 

Banlaem forest (6.32 ± 3.84 cm), in this study. A lower AGB range in the Banlaem mangrove forest (0–179.78 ton 
ha-1) likely resulted in a reduced AGC stock when contrasted with the RBR, where AGB ranged from 117.78 to 

336.41 ton  ha-1. Notably, the lowest AGB recorded in this study (AGB = 0 ton  ha-1) was observed in mangrove 

seedlings, while the highest AGB in the RBR study (AGB = 336.41 ton  ha-1) was found in the mixed species 

conservation forest area [14]. In another study, mangrove diversity exhibited a positive correlation with both biomass 

and carbon storage, and the evaluation of carbon storage was typically conducted using an allometric equation based 

on tree DBH [34]. Therefore, the small diameter and low diversity (1-D = 0.11±0.17, H = 0.17±0.25, and J = 

0.25±0.36) in this Banlaem mangrove forest study contributed to their reduced carbon storage capacity. Research 

conducted at the Sirinart Rajini Ecosystem Learning Center in Prachuap Khiri Khan Province, southern Thailand, 

revealed that the mangrove forest exhibited a species richness six times greater than that observed in Banlaem. 

However, the AGB in this location ranged from 0 to 159.63 ton  ha-1 [15], which is slightly lower than that recorded in 

the mangrove forest of Banlaem.  

This suggests species richness alone cannot predict the AGB and AGC stock in mangrove forests. Several 

additional factors can influence mangrove biomass, such as latitude, tidal range, and heavy metal pollution [35]. 

Future studies could examine the effects of additional factors influencing biomass and carbon stock in the Banlaem 

mangrove, such as tidal range, metal pollution, and other factors. This study also identified that the mangrove 

composition influences the AGB and AGC stocks in the Banlaem mangrove forest (Figure 5). The presence of A. 

marina and Rhizophora spp. in the composition leads to a higher AGB than plots dominated by a single species of A. 

marina. This finding aligns with previous studies that have shown Rhizophora spp. generally to have a greater 

biomass compared to Avicennia spp. [15], and that mixed-species plots exhibit higher biomass than those dominated 

by a single species [14]. It could be due to the higher wood density of R. mucronata and R. apiculata, which results in 

higher biomass compared with A. marina in this study. 

4.2. Mangrove AGB Model 

For the model validation in this study, it was found that the combination of the tested VIs and equipment 

contributed to the effectiveness of mangrove biomass prediction. The combined VIs (including CHM from the UAV) 

exhibited the highest accuracy with each type of equipment. The most effective tools (Table 4; Figure 6), in order, 

were the combined equipment (model no.14), UAV (model no.5), Sentinel-2 (model no. 9), and Landsat-8 (model no. 

13). Compared to previous research in Thailand, this study is the first to employ UAVs, Landsat-8, and Sentinel-2 

imagery with VIs for estimating mangrove biomass and carbon storage. In Ranong province, southern Thailand, a 

research study utilized medium-resolution (ASTER) and high-resolution (GeoEye-1) satellite data, in conjunction with 

machine learning techniques, to model mangrove biomass [13]. Their study found that the optimal AGB model 

achieved an R² value of 0.66. [13]. Compared to their research, the combined model (model no. 14) applied to the 

Banlaem mangrove in this study demonstrated slightly better performance, achieving an R² value of 0.73. Similarly, 

the use of the two satellites (Sentinel-2 and Landsat-8), along with UAVs equipped with VIs and the height model, has 

been reported in other Southeast Asian countries. In Quang Ninh Province, Vietnam, the model utilizing NDVI and 

tree height data from UAV demonstrated high accuracy (R² = 0.831, RMSE = 0.040 ton  ha-1) in estimating the 

mangrove AGB [17]. In contrast to other studies, which indicated that Landsat-8 (R² values ranging from 0.86 to 0.94) 

and Sentinel-2 (R² values ranging from 0.97 to 0.99) were highly effective in estimating mangrove AGB [7, 36]. 

Additionally, in Komodo National Park, Indonesia, multi-source RS data combined with machine learning techniques 

were utilized to estimate mangrove AGB, with the optimal model achieving an R² value of 0.76 [18]. Hence, the 

findings of this study align with previous research [36], demonstrating that the combination of the tested VIs enhances 

the model's effectiveness. Various factors, such as cloud-cover percentage, date consistency, and mangrove 

characteristics, may affect the model's accuracy. Besides these, the uneven-aged trees or species composition can lead 

to a low approach accuracy [37]. 

Certain limitations arose in this study. Some study plots (plots 13-18) were not assessed for their VIs from the 

UAV due to their location within a flight restriction zone (no-fly zone) near an airport. Consequently, these plots were 

excluded from the model assessment in this study. Cloud cover influenced satellite image selection for multispectral 

RS data, resulting in imagery dates that may not align with the fieldwork period. Furthermore, for the UAV data, the 
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height model exhibited a low correlation with the AGB, with an R² value of 0.070. The dense canopy of the mangrove 

may have interfered with the signal from the UAV. To enhance model accuracy, future studies should explore the use 

of LiDAR, given its proven ability to accurately assess mangrove vertical structure [38].  

The modeling approach developed in this study can be applied to other mangrove ecosystems. A study was 

conducted at the Mangrove Forest Resource Development and Learning Center 2 in Nakhon Si Thammarat [16], 

revealing a higher species diversity with six mangrove species identified. Despite this diversity, A. marina and 

Rhizophora species were found to be dominant. The research relied on field-based methods and reported a carbon 

stock of 29.69 tons ha-1, compared to 28.15 ± 25.90 tons ha-1 in Banlaem. The similarities in dominant species and 

carbon storage capacity between the two mangrove sites suggest that the modeling approach developed in this study 

could be effectively applied to the Mangrove Forest Resource Development and Learning Center 2 for monitoring. 

This would help address challenges associated with field data collection. 

It is advisable to apply the modeling approach used in this study to mangrove areas with similar characteristics. 

The Banlaem mangrove forest, for example, displays a clear zonation pattern, with A. marina dominating the interior 

and few Rhizophora species found along the outer edge. Some studies have been conducted in areas of very high 

biodiversity, compared to the Banlaem mangroves [39]. Specific models—linear, non-linear, and those incorporating 

mangrove height—were developed based on the distinct characteristics of each mangrove type [5, 7, 39]. Additionally, 

the choice of models may vary depending on the scale of the study.  

4.3. Implications 

To facilitate a comprehensive carbon assessment in the Banlaem mangrove forest, it is recommended that impact 

assessments be initiated, monitoring and evaluation plans be developed, and community engagement be fostered. The 

findings of this study highlight the utility of multispectral data in accurately estimating mangrove biomass and carbon 

stock. A reproducible framework for carbon stock assessment in the Banlaem mangrove forest and comparable 

tropical mangrove ecosystems in Thailand is provided by the suggested methodological approach and mathematical 

models, notably model 14 (Table 4). The findings of this study contribute to Thailand's national emission reduction 

target work, which include achieving carbon neutrality by 2050 and net-zero greenhouse gas (GHG) emissions by 

2065. To align with these goals, Thailand has revised its Nationally Determined Contributions (NDC) strategy, raising 

the GHG emissions reduction target to 40% by 2030, a significant increase from the previous 25% [40]. Ultimately, 

given the voluntary market mechanism in Thailand, this study provides comprehensive support to land managers in 

making informed decisions about harvesting, tree planting, and habitat conservation in this promising area, thereby 

fostering community engagement in sustainable management and carbon offset initiatives. Notably, for the Banlaem 

community, which sees around 300-400 tourists and students visiting the Banlaem mangrove forest each month to 

plant mangrove trees [19], this study could help the local community recognize the increasing importance of carbon 

storage in mangroves. It would also enhance the collection of various statistical data to assess the changes resulting 

from planting mangroves, particularly in reducing greenhouse gases. Additionally, this study found that combining 

grey and loop-root mangroves in this area yields a higher carbon stock than grey mangroves alone (Figure 5). This 

finding will be helpful to authorities in formulating the mangrove plantation plan and management strategies for the 

planted Banlaem mangrove forest, supporting blue carbon management.  

To integrate the findings of this study into the policy frameworks for the Banlaem community, we recommend 

applying this assessment method, along with the associated techniques, to the Thailand Voluntary Emission Reduction 

(T-VER) program. This program serves as a mechanism for reducing greenhouse gas (GHG) emissions, permitting the 

use of remote sensing and alternative techniques, subject to approval by the Thailand Greenhouse Gas Management 

Organization (TGO) [41]. Alternatively, we suggest incorporating the Low Emission Support Scheme (LESS), which 

promotes the development of activity models aimed at raising awareness about greenhouse gas (GHG) reduction. The 

scheme also recognizes individuals or groups who contribute positively by awarding certificates of honor [42]. This 

not only supports GHG emission reduction but also fosters environmental awareness and promotes ecotourism within 

the community. 

5. Conclusion 

This study represents a significant advancement in understanding and managing mangrove carbon stocks, 

particularly within the Banlaem region. This study assessed the AGB and AGC stocks in the Banlaem mangroves and 

developed a technique for generating an AGB prediction model in this mangrove ecosystem. Three mangrove species 

were observed at the study site, reflecting low biodiversity in this mangrove area. In addition to the planted species (R. 

mucronata), A. marina and R. apiculata were also found. Overall, the AGB and AGC stocks were relatively high, 

particularly in areas where A. marina and R. mucronata coexisted. To develop the AGB model for the Banlaem 

mangroves, this study demonstrated that using vegetation indices (NDVI, SAVI, and GNDVI) integrated with the 

vertical model (CHM) significantly improved AGB prediction. Integrating data from two satellites with UAV imagery 
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achieved the highest accuracy in the prediction, with an R² value of 0.73 and an RMSE of 22.0 tons  ha-1. Therefore, 

the model applies to the Banlaem mangroves. This is the first study to quantify carbon stock in this mangrove forest 

and propose a novel approach to estimate mangrove AGB. The findings highlight the effectiveness of integrating 

multiple data sources and variables to enhance model accuracy. Ultimately, this study provides essential data on 

mangrove carbon stock to the Banlaem community and introduces a method for its measurement, offering a 

foundation for assessment, monitoring, and community engagement in mangrove carbon evaluation. The evaluation 

supports Thailand’s carbon neutrality and greenhouse gas (GHG) reduction goals under its Nationally Determined 

Contribution (NDC) to the Paris Agreement. This approach could be implemented through voluntary carbon markets, 

such as the Thailand Voluntary Emission Reduction Program (T-VER). 
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