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Abstract 

Permeability is a vital parameter in reservoir engineering that affects production directly. Since this parameter's 

significance is obvious, finding a way to an accurate determination of permeability is essential as well. In this paper, the 

permeability of two notable carbonate reservoirs (Ilam and Sarvak) in the southwest of Iran was predicted by several 

different methods, and the level of accuracy in all models was compared. For this purpose, Multi-Layer Perceptron Neural 

Network (MLP), Radial Basis Function Neural Network (RBF), Support Vector Regression (SVR), decision tree (DT), 

and random forest (RF) methods were chosen. The full set of real well-logging data was investigated by random forest, 

and five of them were selected as the potent variables. At depth, computed gamma-ray log (CGR), spectral gamma-ray log 

(SGR), neutron porosity log (NPHI), and density log (RHOB) were considered efficacious variables and used as input data, 

while permeability was considered output. It should be noted that permeability values are derived from core analysis. 

Statistical parameters like the coefficient of determination (R2), root mean square error (RMSE), and standard deviation 

(SD) were determined for the train, test, and total sets. Based on statistical and graphical results, the SVM and DT models 

perform more accurately than others. RMSE, SD and R2 values of SVM and DT models are 0.38, 1.63, 0.97 and 0.44, 2.89, 

and 0.96 respectively. The results of the best-proposed models in this paper were then compared with the outcome of the 

empirical equation for permeability prediction. The comparison indicates that artificial intelligence methods perform more 

accurately than traditional methods for permeability estimation, such as proposed equations. 

Keywords: Permeability; Well Logging; Machine Learning; Data Mining; Ilam Formation; Sarvak Formation. 

 

1. Introduction 

Permeability can be considered as one of the most significant concepts in reservoir engineering owing to its effect on 

identifying flow units, characterization of reservoirs, and planning for perforation [1-3]. Many challenges faced during 

production could be related to this parameter. Moreover, permeability is required for the dynamic modeling of a 

reservoir. Therefore, accurately determining this parameter is of considerable importance. There are several common 

methods for this target, such as well testing, core analysis, and well logging. Usually, because of high cost and time 

consumption, these methods are not available in all wells of a field or all over the desired intervals, and sometimes the 

low accuracy of some methods causes us to avoid using their results. Thus finding a model that predicts permeability 

values of a reservoir can provide an insight to act better in so many branches like developing a plan of field, production, 

reserve estimation, etc. This paper aims to predict the permeability's precise values in two Iranian significant carbonate 

reservoirs, the Ilam and Sarvak Formations.  
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Artificial intelligence and machine learning are considered widely used techniques for parameter prediction, 

especially in different branches of petroleum engineering. For instance, these artificial intelligence methods have been 

used for making synthetic well logs [4], determination of infill well location [5], reservoir characterization [6], drilling 

fluid [7], oil gas ratio [8], prediction of permeability [9], lost circulation [10], prediction of scale thickness [11], and 

vitrinite reflectance prediction [12]. Various approaches can predict this parameter by making models, and many 

published studies have investigated the subject of permeability modeling. In some case studies [1, 13-16], neural 

networks were used to predict permeability values while well-logging data was used as input. Other efforts have been 

made by applying the committee machine neural network for this goal [17, 18]. In 2014, two RVR and SVR methods 

were applied for permeability prediction through well log data [19]. RVR or Relevance Vector Regression is one of the 

algorithms of artificial intelligence that was compared with SVR or Support Vector Regression. Final results indicated 

that RVR is more precise for permeability prediction. Saljooghi & Hezarkhani (2015) used a method based on wavelet 

theory and artificial neural networks for the prediction of permeability [20]. The prediction of NMR logging parameters 

was made by Jamshidian et al. (2015) [21]. For this purpose, they utilized a multilinear perceptron network optimized 

by the imperialist competitive algorithm. Handhal (2016) predicted permeability through porosity values and found a 

promising relationship between these two parameters by using approaches like M5 decision trees, linear regression, and 

adaptive neuro-fuzzy inference system [22]. Rafik & Kamel (2017) proposed a new procedure on this issue and predicted 

permeability with the combination method of a stepwise algorithm and alternating conditional expectations [23]. For 

example, Al-Amri et al. (2017) and Zhao et al. (2018) used multi-resolution graph-based clustering (MRGC) and 

representative elementary volume (REV) scale lattice Boltzmann method (LBM) for permeability prediction, 

respectively [24, 25]. Eventually, Wood (2020) used the transparent open box machine-learning and data-mining 

algorithm for this aim [26]. Already, the Sarvak Formation was studied [27–29], whereas the Ilam Formation was not 

investigated. This paper peruses these two reservoirs for the first time in the studied field.   

In this paper, permeability quantities are predicted with high precision for Ilam and Sarvak reservoirs, which are two 

significant reservoir intervals in Iranian oil fields. A full set of well logging data and core measurements are available 

for these formations in a well in the southwestern part of Iran. Artificial neural networks such as Multi-Layer Perceptron 

Neural Network (MLP), Radial Basis Function Neural Network (RBF), and Support Vector Regression (SVR) are used 

for predicting permeability. In addition to these approaches, two data mining methods, decision tree (DT) and random 

forest (RF), are applied for permeability prediction. Finally, all the techniques' results are compared by known statistical 

parameters to determine the most accurate model. A comparison of all these methods for finding permeability values in 

the studied field is the primary goal of this paper, whereas previous studies have not focused on such a comprehensive 

comparison, and they were summarized in just one or two distinct methods. This point can be considered the main 

innovation of this paper. Also, there is no study about the permeability prediction of the Ilam and Sarvak formations. 

Moreover, a comparison between these artificial intelligence techniques and the proposed equations for permeability 

prediction in Ilam and Sarvak was made.  

2. Geographical, Geological, and Data Descriptions 

The southwestern part of Iran, with great amounts of hydrocarbon reserves, is considered one of the world's most 

productive regions [30]. The studied well is located in the Abadan plain, which is a part of this area (Figure 1). With an 

approximate area of 26000 km2, the Abadan plain is located between the boundary of Iran and Iraq, Persian Gulf, and 

Dezful Embayment that containing numerous oil and gas wells [31]. Jurassic and Cretaceous reservoirs of this region 

include lots of oil and gas [32-34]. Ilam, Sarvak, Gadvan, and Fahliyan are considered oil reservoirs in this region. Still, 

just limy Ilam and Sarvak formations with an approximate thickness of 90 and 600 m, respectively, are investigated in 

this paper. 

  

Figure 1. Location of Abadan Plain (a) and oil fields in SW Iran shown with green color (b) after [33, 34] 

(a) (b) 
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The Santonian Ilam Formation, a proven significant hydrocarbon reservoir interval, comprises light gray shallow-

marine limestones with beds of algal and rudist-bearing limestones capped by shales. These shallow-water carbonates 

contain natural fractures [35]. The late Albian–early Turonian Sarvak Formation is the most critical reservoir in the 

Abadan plain. The Sarvak Formation is composed of a shallow-water massive limestone and deep-marine thin-bedded 

facies [36]. There are two essential disconformity surfaces in Cenomanian-Turonian intervals of the Sarvak Formation 

in this area that control the reservoir's quality. In the Abadan Plain, an argillaceous-shaley limestone (Laffan Formation 

with the age of Coniacian) with a thickness of about 10-15 m separates the Sarvak and Ilam formations [37].   

Previous research indicates the Ilam reservoir is considered a diagenetic reservoir in Dezful embayment and possesses 

five units that one of them is an excellent reservoir with high quality [38]. Sarvak Formation keeps the best quality of a 

reservoir in intervals with rudist limestones over the Zagros area and the Persian Gulf [39]. Also, Ilam and Sarvak are 

fractured reservoirs in the Strait of Hormuz, the Persian Gulf [40]. The other study about these two reservoirs mentioned 

earlier indicates that Ilam Formation shows better reservoir characteristics than Sarvak in the Dezful embayment [41].  

In this work, full set logging data of computed gamma ray (CGR), spectral gamma ray (SGR), potassium (POTA), 

thorium (TH), uranium (URAN), sonic (DT), Density (RHOB), Neutron (NPHI), photoelectric absorption properties 

(PEF), Micro-Spherical Focused Log (MSFL), laterolog deep (LLD), and laterolog shallow (LLS) belong to an oil well 

located in the Abadan plain. The statistical details of these data have been summarized in Table 1. Moreover, the core 

samples of Ilam and Sarvak formations were analyzed in the core laboratory. The results of measured permeability are 

also shown in Table 1. Different computational intelligence methods have been used to model the permeability 

employing a dataset containing 171 data points.  

Table 1. Input and output data with the minimum, maximum, and average values 

# Parameter Unit Min Max Average 

1 CGR API 0.58 54.98 15.11 

2 DT US/F 47.50 81.49 62.63 

3 LLD OHMM 0.46 3074.19 33.95 

4 LLS OHMM 0.45 3073.80 29.86 

5 MSFL OHMM 0.10 175.03 8.33 

6 NPHI V/V 0.0021 0.27 0.10 

7 PEF B/E 3.48 11.26 5.95 

8 POTA % 0.03 2.93 0.91 

9 RHOB G/C3 2.24 2.78 2.54 

10 SGR API 13.79 89.45 28.12 

11 TH PPM 0.03 5.75 0.68 

12 URAN PPM 0.06 7.08 1.45 

13 Depth M 2670 3430 - 

14 Permeability (K) mD 0.01 817.12 14.65 

After gathering data, the required data were selected and then normalized to enhance the system's accuracy [42]. The 

dataset is complex and constructed as a model in machine learning due to working with many features. So, selecting 

essential elements and the decreasing dimension of the dataset seems necessary [43]. Also, this causes reducing the time 

of training, makes the interpretation of the model easier, and decreases expenses of data gathering [44]. In this technique, 

variables' choice and importance depend on the selected predictive model [45]. Thus, for finding variables with the most 

impact, an appropriate model should be employed. In this paper, well logging data are considered as inputs. The variation 

of all these values with depth is shown in Figure 2. The random forest approach was used to determine the importance 

of variables, which will be discussed later. The results of the random forest method are illustrated in Figure 3. As shown, 

the first and the second most effective variables on permeability are depth and NPHI followed by RHOB, CGR, and 

SGR. Therefore, Depth, NPHI, RHOB, CGR, and SGR were selected for making models as important inputs with the 

most impact. It must be emphasized that this data selection is suitable for this situation and cannot be attributed to all 

reservoirs. It should be noted that Figure 4 demonstrates all possible relations between these selected variables and 

permeability. As indicated in this figure, the value of the regression coefficient of CGR and NPHI versus permeability 

is negative, while for two other inputs, it has a positive correlation. 
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Figure 2. Full set well logging data 

 

Figure 3. Feature ranking by random forest 
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Figure 4. Charts of regression coefficient between selected input and permeability 
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3. Research Methodology 

One of the non-parametric supervised learning tools is the classification and regression tree (CART) technique being 

used extremely in so many fields like industries and applications by a convincing performance of a cause-and-effect 

analysis. In data mining, DTs (decision trees) consist of two classes named “The classification tree” and “The regression 

tree”. Both of these trees have the same procedure. Splitting predictors leads to the separation of observation that forms 

DT [46]. The name of this process is binary recursive partitioning. After that, parent nodes are divided into two child 

nodes whose name is binary splitting, and this process will be continued until arriving at nodes that will not have any 

splitting named terminal nodes [47]. Finding the splitting criteria, which depends on inputs, a DT begins, and then the 

value of square error between observed and calculated outputs is minimized. Thus it will have one root node and two 

child nodes [48]. For further splitting, the same pattern will be repeated on all child nodes. Finally, DT has logic criteria 

for splitting based on inputs and a diagram of the procedure scheme. 

The type of outputs determines the type of trees. If outputs are naturally categorized, the tree will be the classification 

type; while outputs are continuous, that will be the regression tree [49]. In this paper, since permeability (the output) is 

a continuous variable, a regression tree-based on five inputs (depth, NPHI, RHOB, SGR, and CGR) is used. Figure 5 

illustrates this tree. Statistical information of each node is presented in the plot. All splitting values and outputs are 

mentioned as well. 

 
Figure 5. Regression tree for permeability prediction with statistical parameters of nodes and splitting values 
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Application of RF method as a set of some unpruned decision trees with sequential growth in place of a single 

restricted type was mentioned by Breiman (2001) at first. RF uses the bootstrap sampling method for choosing random 

data due to substitution eventuality. Then, the other samples are used for the test of the tree. All trees will have this 

procedure, so the estimation will act better since random sampling makes differences between sets of trees. Eventually, 

with an internal cross-validation program between all trees, the average of errors is calculated. For training a tree in this 

approach, a small subset of size m out of M features for each node is chosen [50]. While altering features for each node, 

all over forest growth, the size of m is sustained stable. So, the best splitting of nodes is done in m features, not all 

features of M [51]. Different parameters in three categories of trees in the forest (ntree), size of subset (mtry), and min 

leaf size in each tree grow up the trees in RF. Indeed, the optimum value of these parameters leads to convincing 

prediction between ensembles of trees. By replacing features randomly, the precision of the model is calculated. Thus, 

the rank of features regarding their effects on the outputs of model is determined and can be considered an advantage 

for RF. 

Numerous errors, the great value of variance, and the difficulty of overfitting are the problems of Decision trees; 

however, they can act adequately in nonlinear systems [52]. It must be emphasized that these aforementioned issues can 

be avoided by applying random forest, an ensemble learning method suggested by Breiman et al. (1984) [53]. The 

random forest can be considered an appropriate tool for unsupervised learning and classification and regression [54]. 

Similar to other ensemble learning techniques, the random forest can improve the efficiency of some weak learners, 

such as single decision trees, single perception, etc. [55].  

The structure of ANNs was derived from the brain's structure, and they simulate the function of the brain for learning 

[56]. Since ANNs are mathematically non-linear, available, and simple models, they are used extremely [57, 58]. One 

of the methods of artificial intelligence is the multi-layer perceptron network used widely [59, 60]. These networks act 

appropriately in non-linear systems modeling. Hidden layer(s) provide the relation of input and output layers in a model. 

The effectiveness of an MLP-NN strongly depends on the number of hidden layers and the number of their neurons [61, 

62]. It should be noted that even one hidden layer has high efficiency for constructing a proper model, and networks 

with two or more hidden layers are appropriate for systems that are so complicated. Multiplying the weight of every 

neuron in related neurons in the previous layer and summing them eventuate the value of neurons in the hidden layer or 

output layer. Then a bias is added, and an activation function is exerted on this value to determine the final output. There 

are some kinds of the activation function. Usually, tnsig is used for the hidden layer and purelin for the output layer [63, 

64], which are as follows: 

Purelin: 𝑓(𝑥) = 𝑥 (1) 

Tansig: 𝑓(𝑥) =
2

1+𝑒𝑥𝑝 (−2𝑥)
− 1  (2) 

Also, the Levenberg Marquardt algorithm's performance in estimating efficiency function between the other 

mentioned learning algorithms is the best. In this paper, this algorithm is used. To determine the most suitable network 

with the high ability for modeling non-linear problems, the tansig function for the hidden layer and purelin for the output 

layer were selected. The numbers of neurons were trained, and through a trial and error procedure, the best performance 

was selected by comparison. Meanwhile, MSE or mean squared error was calculated in all iterations during training. 

Figure 6 displays MSE values for different numbers of neurons in both hidden layers. According to the figure, MLP 

structure with two hidden layers in which the first one has three neurons and the second one has five neurons is the best 

one with minimum MSE. All characteristics of the network are presented in Table 2. 

Table 2. Structure of the MLP network developed to predict permeability 

Multi-Layer Perceptron Network type 

Levenberg-Marquardt backpropagation Training function 

3 Number of layers 

3 Number of neurons in 1st hidden layer 

5 Number of neurons in 2nd hidden layer 

TANSIG Transfer function of 1st hidden layer 

TANSIG Transfer function of 2nd hidden layer 

1 Number of neurons in output layer 

PURELIN Transfer function of output layer 

MSE Performance objective function 
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Figure 6. The number of neurons of hidden layers versus MSE of the training data set 

Since RBFs behave more correctly in non-linear system modeling, they are used routinely [65]. To model nonlinear 

data, these networks have more proper operations for better accuracy. The other benefit of them is their single procedure 

for finding the answer in contrast to MLP networks having iterative procedure [66]. There are different kinds of methods 

for finding the center of RBF networks, such as random selection of centers, clustering, and density estimation. In this 

paper, clustering has been used. The precision of K-means is better than the other methods for finding centers, therefore 

it is used more for clustering. Below equation shows the output of RBF [67, 68]: 

𝑓(𝑥𝑖) = ∑ 𝑤𝑖

𝑁

𝑖=1

𝜑𝑘𝑖(‖𝑥𝑘 − 𝑐𝑖‖)   𝑖 = 1, … , 𝑁   𝑘 = 1, … , 𝑀 (3) 

where, 𝑐𝑖  is the center, N is the number of hidden layers’ neurons, ‖𝑥𝑘 − 𝑐𝑖‖ is the distance of inputs and centers, 𝑤𝑖  is 

the weight parameter, 𝜑𝑘𝑖  is the kernel function, and M is number of inputs.  

The schematic form of the RBF network, which is used in this paper, is shown in Figure 7. In addition, determining 

the proper number of neurons in the hidden layer is done by the RBF network. For this purpose, the number of neurons 

has been added one by one, and the MSE value is calculated. The minimum amount of MSE corresponds to the best 

structure of the network. As illustrated in Figure 8, a network with 25 neurons can perform in the best condition. 

Moreover, SVR is a technique that can estimate the purposed variables through statistical learning theory principals. By 

using an appropriate linear regression model in a new feature space that input data which are mapped from the original 

space to go to a higher m-dimensional space, unknown values are estimated. Different phases of this technique are 

displayed in Figure 9. As a final point, it should be stated that in this paper, two main ways have been used for 

determining optimum parameters of all implemented artificial intelligence approaches. The procedure of previous 

research [10], as well as the trial and error approach, have been used for this purpose. 

 
Figure 7. Structure of the RBF network with three layers. 



Journal of Human, Earth, and Future         Vol. 2, No. 2, June, 2021 

90 

 

Figure 8. MSE versus the number of hidden layer’s neurons for determining the best structure of the network 

 

Figure 9. The sequence of steps in the SVR model 

4.  Results and Discussion 

This section of the paper focuses on analyzing models to select the best of them. Some statistical and graphical 

methods are used for this purpose [43, 69].  

It should be noted that statistical parameters should investigate the performance and precision of this paper's 

implemented models. Therefore, analysis of errors is done with some indices named Coefficient of determination (𝑅2), 

Root mean square error (RMSE) and Standard deviation (SD), which are defined respectively as bellows [70]:  

𝑅2 = 1 −
∑ (𝑦𝑥 − 𝑧𝑥)2𝑚

𝑥=1

∑ (𝑦𝑥 − 𝑦𝑥,𝑚𝑒𝑎𝑛)2𝑚
𝑥=1

 (4) 

𝑅𝑆𝑀𝐸 = √
1

𝑚
∑(𝑦𝑥 − 𝑧𝑥)2

𝑚

𝑥=1

 (5) 
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𝑆𝐷 = √
1

𝑚 − 1
∑(

𝑦𝑥 − 𝑧𝑥

𝑦𝑥

)2

𝑚

𝑥=1

 (6) 

where, 𝑦𝑥 is experimental value, 𝑧𝑥 is estimated value and 𝑦𝑥,𝑚𝑒𝑎𝑛  is the average of experimental values. 

RMSE determines dispersion of data around the regression line whereas R2 indicates the matching between initial 

and predicted data. Besides, standard deviation or SD is a measure of a set of values variation. Therefore, these 

parameters can evaluate implemented models' precision by finding the discrepancies between measured data and 

predicted data. 

These indices are calculated and presented in Table 3, revealing high accuracy of models, especially DT and SVM, 

and less precision for the RF model. As listed in this table, statistical parameters have been calculated for training, test, 

and total data sets. The numbers of data in training and test sets are 120 and 51, respectively. In the total set, the highest 

R2 values belong to the SVM and DT methods (0.97 and 0.96). As shown in Table 3, SVM and DT models possess the 

lowest amount of RMSE and SD. Numerical assessments indicate the more precision of these two methods, whereas the 

other implemented models like RF, RBF, and MLP also show relatively high accuracy. 

Table 3. Statistical parameter values for SVM, DT, RF, RBF, and MLP 

Statistical parameters SVM DT RF RBF MLP 

Training Set 

RMSE 0.24 0.46 0.79 0.63 0.45 

SD 1.76 2.64 8.85 5.71 5.77 

R2 0.99 0.96 0.88 0.94 0.96 

Number of Data 120 120 120 120 120 

Test Set 

RMSE 0.58 0.39 0.55 0.46 1.22 

SD 1.30 3.45 3.38 8.79 4.02 

R2 0.91 0.96 0.93 0.91 0.90 

Number of Data 51 51 51 51 51 

Total Set 

RMSE 0.38 0.44 0.69 0.59 0.76 

SD 1.63 2.89 6.87 6.75 5.29 

R2 0.97 0.96 0.89 0.94 0.93 

Number of Data 171 171 171 171 171 

To provide a visual insight of permeability prediction by all methods, the plot of measured core data versus predicted 

data in the part of the dataset in which the used methods perform best is illustrated in Figure 10. This figure depicts 

predicted data (vertical axes), measured data (horizontal axes), and their regression plot. In this figure, permeability 

values of test data (red markers) and train data (blue markers) have been illustrated in graphical form. This can be 

deduced that the SVM model shows the highest match between measured and predicted data.  
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Figure 10. The cross plot of modeling prediction of permeability versus measured data for both train and test data 

Moreover, Figure 11 illustrates the relative deviations of these models. In other words, these plots show the dispersion 

between data and outputs of constructed models. These variations can be distinguished in different ranges of data 

(horizontal axes). As illustrated in Figure 11, the applied SVM model shows the lowest data scattering and more 

concentrated data. 
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Figure 11. Relative deviations of DT, RF, SVR, MLP, and RBF models 

For better comprehension, the performances of all methods have been depicted in Figure 12 to assess the differences 

visually. In this figure, the measured permeability values of core data are shown with black dots. Colored lines also offer 

the obtained permeability values by the other five methods. This figure represents the superiority of DT and SVM 

techniques for permeability prediction. As shown, this figure also demonstrates the weaker performance of the RF model 

to predict permeability values.  

 

Figure 12. Comparison of different methods for prediction of permeability (black dots are measured data) 
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The use of experimental equations to estimate permeability has a long history [71-75]. These correlations relate the 

permeability values to pore characteristics such as porosity. The proposed empirical equations are not very precise, 

especially in carbonate rocks associated with the complicated texture. Also, these equations are merely applicable in the 

specified region. In other words, the generalization of these relations seems impossible [73]. In this section of this 

research, the achievement of this paper should be compared with previous experimental equations to assessing the 

preference of artificial intelligence methods. For this purpose, two proposed equations for permeability prediction in 

Ilam and Sarvak formations in this well has been reported as follow [76-78]: 

Ilam Formation 𝐾 = 0/0113 𝑒𝑥𝑝0/236𝜑 (7) 

Sarvak Formation 𝐾 = 0/1505 𝑒𝑥𝑝0/2109𝜑 (8) 

Results of predicted permeability values based on these two aforementioned equations as well as the best-proposed 

models for permeability prediction in this study (DT and SVM), are illustrated in Figure 13. This figure provides a visual 

insight into comparison. As presented, these two graphs have been plotted against depth. Permeability values are shown 

in yellow circles, whereas predicted amounts of this parameter by equations and artificial intelligence approaches have 

been shown in colored lines. It must be emphasized that there is a gap in the range of 3200 m to 3235 m in the Sarvak 

Formation since core data has not been reported in this interval. Therefore, Sarvak Formation has been assessed in two 

distinct zones.   

 

Figure 13. The variation of obtained permeability values by the empirical equation, SVM, and DT quantities with depth for 

Ilam and Sarvak formations 

As depicted in Figure 13, experimental equations' performance is weaker than DT and SVM models in Ilam and 

Sarvak formations. These equations are incapable of predicting permeability values that are far from the average of the 

data, whereas DT and SVM models act reliably even in outlier data. These two artificial intelligence methods follow the 

trend of measured data appropriately. Moreover, statistical parameters of 𝑅2, RMSE and SD are calculated for predicted 

permeability by two equations of 7 and 8 in all over the Ilam and Sarvak formations. These values are listed in Table 4. 

For better comparison, the results of statistical parameters belong to DT and SVM methods are also listed in this paper. 
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As shown, statistical values vary dramatically in the equation case. R2 exhibits an inappropriate and very low amount. 

RMSE and SD of equation case possess larger values than DT and SVM models too. These results indicate poor 

performance of empirical equations compared to artificial intelligence approaches. 

Table 4. The calculated statistical parameters for the empirical equation as well as DT and SVM models 

 Equation SVM DT 

R2 -0.75 0.97 0.96 

RMSE 5.78 0.38 0.44 

SD 11.26 1.63 2.89 

5. Conclusion 

Different types of data mining and neural network techniques were applied to predict the permeability values of the 

Ilam and Sarvak formations, which are two reservoirs in the southwestern part of Iran. For this target, MLP, RBF, and 

SVR neural networks, in addition to DT and RF techniques, were selected for an all-around comparison. Since other 

researchers investigated these methods individually, a comparison of several techniques can be considered the main 

novelty of the present paper. Well-logging data is used as input data. In the studied well, CGR, SGR, DT, LLD, LLS, 

MSFL, NPHI, RHOB, POTA, URAN, TH, and PEF logs are available. Random forest: selecting the variables with the 

most influence on permeability and reducing dimension was made by random forest. Depth, SGR, CGR, NPHI, and 

RHOB were chosen as the most influential parameters and were considered input data. 70% of the data was allocated 

for training and the rest for testing. The statistical parameters, such as R2, SD, and RMSE, were calculated for all 

approaches. Furthermore, the cross plots of measured and predicted data, in addition to the relative deviations of all 

models, were plotted. The graphical and statistical results of the constructed models show that all of them perform almost 

accurately. However, DT and SVM among these models are the best techniques for permeability prediction in the Ilam 

and Sarvak formations. The R2 values of these two methods are 0.97 (SVM model) and 0.96 (DT model). Moreover, the 

SD and RMSE of these models have been calculated at 1.63 and 0.38 (for SVM) and 2.89 and 0.44 (for DT), respectively. 

The performances of two DT and SVM models in permeability prediction were compared with the previously proposed 

equation for this purpose. The results indicate empirical equations perform weakly in permeability prediction (with 

statistical parameters of R2 = -0.75, SD = 11.26, and RMSE = 5.78), whereas machine learning methods act more 

accurately.  
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