Determination of Second Virial Coefficient of Gold by a Modified Berthelot Equation of State

M. Sivakumar, R. Balasubramanian


The present study aims to determine the second virial coefficient of gold over a wide range of temperatures from the boiling point to the critical point. A three - parameter modified Berthelot equation of state has been employed to determine the second virial coefficient of gold. The parameters of the equation of state are determined through the critical - point parameters of gold. The temperature -dependence of the second virial coefficient of gold has been investigated. The obtained results are compared with that of the van der Waals equation of state, Berthelot equation of state, Tsonopoulus correlation, and McGlashan correlation. The results of this work agree well with that of other correlations in the vicinity of the critical point. It is also established that gold obeys the single - parameter law of corresponding states. And, the new parameter introduced in the attractive term of the equation of state is found to be a thermodynamic similarity parameter.


Doi: 10.28991/HEF-2020-01-04-02

Full Text: PDF


Equation of State; Law of Corresponding States; Gold; Second Virial Coefficient.


Martynyuk, M. M. (1999). Ideal tensile strength of metals on the basis of a generalized Van der Waals equation. Journal of Engineering Physics and Thermophysics, 72(4), 682–686. doi:10.1007/bf02699274.

Palpant, B., Guillet, Y., Rashidi-Huyeh, M., &Prot, D. (2008). Gold nanoparticle assemblies: Thermal behaviour under optical excitation. Gold Bulletin, 41(2), 105–115. doi:10.1007/BF03216588.

Inogamov, N., Zhakhovsky, V., &Khokhlov, V. (2018). Laser ablation of metal into liquid: Near critical point phenomena and hydrodynamic instability. AIP Conference Proceedings, 1979, 203101. doi:10.1063/1.5045043.

Esther, J., &Sridevi, V. (2017). Synthesis and characterization of chitosan-stabilized gold nanoparticles through a facile and green approach. Gold Bulletin, 50(1), 1. doi:10.1007/s13404-016-0189-1.

Jurkin, T., Guliš, M., Dražić, G., &Gotić, M. (2016). Synthesis of gold nanoparticles under highly oxidizing conditions. Gold Bulletin, 49(1–2), 21–33. doi:10.1007/s13404-016-0179-3.

Larsson, S. (2004). Superconductivity in copper, silver, and gold compounds. Chemistry - A European Journal, 10(21), 5276–5283. doi:10.1002/chem.200400017.

Manas, A. (2020). Gold’s red shift: colorimetry of multiple reflections in grooves. Gold Bulletin, 53(3–4), 147–158. doi:10.1007/s13404-020-00285-y.

Manisekaran, R., Jiménez-Cervantes Amieva, E., Valdemar-Aguilar, C. M., &López-Marín, L. M. (2020). Novel synthesis of polycationic gold nanoparticles and their potential for microbial optical sensing. Gold Bulletin, 53(3–4), 135–140. doi:10.1007/s13404-020-00283-0.

Masoud, N., Partsch, T., de Jong, K. P., & de Jongh, P. E. (2019). Thermal stability of oxide-supported gold nanoparticles. Gold Bulletin, 52(2), 105–114. doi:10.1007/s13404-019-00259-9.

Ko, S. H., Choi, Y., Hwang, D. J., Grigoropoulos, C. P., Chung, J., &Poulikakos, D. (2006). Nanosecond laser ablation of gold nanoparticle films. Applied Physics Letters, 89(14), 141126. doi:10.1063/1.2360241.

Sawtelle, S. D., & Reed, M. A. (2019). Temperature-dependent thermal conductivity and suppressed Lorenz number in ultrathin gold nanowires. Physical Review B, 99(5), 54304. doi:10.1103/PhysRevB.99.054304.

Shim, S. H., Duffy, T. S., &Takemura, K. (2002). Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth and Planetary Science Letters, 203(2), 729–739. doi:10.1016/S0012-821X(02)00917-2.

Sadrolhosseini, A. R., Abdul Rashid, S., &Zakaria, A. (2017). Synthesis of Gold Nanoparticles Dispersed in Palm Oil Using Laser Ablation Technique. Journal of Nanomaterials, 2017, 6496390. doi:10.1155/2017/6496390.

Wang, Y., Zhou, X., Liu, Q., Jin, Y., Xu, C., & Li, B. (2020). Gold nanorods as colorimetric probes for naked-eye recognition of carnitine enantiomers. Gold Bulletin, 53(3–4), 159–165. doi:10.1007/s13404-020-00286-x.

Wu, Z. Q., & Lin, F. (2017). Evaluation of Pt and Au pressure scales based on MgO absolute pressure scale. Science China Earth Sciences, 60(1), 114–123. doi:10.1007/s11430-015-0232-4.

Wisniak, J. (2010). Daniel Berthelot. Part I. Contribution to thermodynamics. EducacionQuimica, 21(2), 155–162. doi:10.1016/s0187-893x(18)30166-6.

Bessinger, B., & Apps, J. A. (2005). The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver. (No. LBNL-57395). Lawrence Berkeley National Lab. (LBNL), Berkeley, California, United States.

Kubaschewski, O., & von Goldbeck, O. (1975). The thermochemistry of gold - Fundamental data for the solution of practical problems. Gold Bulletin, 8(3), 80–85. doi:10.1007/BF03215072.

Etchegoin, P. G., Le Ru, E. C., & Meyer, M. (2006). An analytic model for the optical properties of gold. Journal of Chemical Physics, 125(16), 164705. doi:10.1063/1.2360270.

Kazakevich, V. S., Kazakevich, P. V., Yaresko, P. S., &Kazakevich, D. A. (2018). Laser ablation of gold and titanium targets in heavy water. Journal of Physics: Conference Series, 1096(1), 12123. doi:10.1088/1742-6596/1096/1/012123.

Lytton-Jean, A. K. R., &Mirkin, C. A. (2005). A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. Journal of the American Chemical Society, 127(37), 12754–12755. doi:10.1021/ja052255o.

Migdal, K. P., Il’Nitsky, D. K., Petrov, Y. V., &Inogamov, N. A. (2015). Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold. Journal of Physics: Conference Series, 653(1), 12086. doi:10.1088/1742-6596/653/1/012086.

Jhabvala, J., Boillat, E., Antignac, T., &Glardon, R. (2010). On the effect of scanning strategies in the selective laser melting process. Virtual and Physical Prototyping, 5(2), 99–109. doi:10.1080/17452751003688368.

Otmani, S., Tamim, R., Moustaine, D., &Mahdouk, K. (2017). Thermodynamic properties of gold-rare earth elements. European Physical Journal: Special Topics, 226(5), 1123–1135. doi:10.1140/epjst/e2016-60227-3.

Puliti, G., Paolucci, S., & Sen, M. (2012). Thermodynamic properties of gold-water nanofluids using molecular dynamics. Journal of Nanoparticle Research, 14(12), 1296. doi:10.1007/s11051-012-1296-4.

Ruffino, F., Grimaldi, M. G., Giannazzo, F., Roccaforte, F., &Raineri, V. (2008). Thermodynamic properties of supported and embedded metallic nanocrystals: Gold on/in SiO2. Nanoscale Research Letters, 3(11), 454–460. doi:10.1007/s11671-008-9180-y.

Singh, J. K., Adhikari, J., &Kwak, S. K. (2006). Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilibria, 248(1), 1–6. doi:10.1016/j.fluid.2006.07.010.

Sobko, A. A. (2014). Description of Evaporation Curve by the Generalized Van-der-Waals-Berthelot Equation. Part I. Journal of Physical Science and Application, 4(8), 524-530.

Balasubramanian, R. (2019). Thermodynamic Limit of Superheat of Fluids by a Generalized Berthelot Equation of State. American Journal of Materials Science and Application, 7, 3.

Khomkin, A. L., &Shumikhin, A. S. (2017). The thermodynamics and transport properties of transition metals in critical point. High Temperatures - High Pressures, 46(4–5), 367–380.

Boschi-Filho, H., &Buthers, C. C. (1997). Second virial coefficient for real gases at high temperature. arXiv, 1-31, doi:10.48550/arXiv.cond-mat/9701185.

Sadus, R. J. (2002). The Dieterici alternative to the van der Waals approach for equations of state: Second virial coefficients. Physical Chemistry Chemical Physics, 4(6), 919–921. doi:10.1039/b108822j.

Poling, B.E., Prausnitz, J.M., O’Connell, J.P. (2001). The Properties of Gases and Liquids. Fifth Edition, McGraw-Hill Companies, New York, United States.

McGlashan, M. L. (1968). Compression Factors, Landolt Bornstein. Royal Institute of Chemistry, London, United Kingdom.

Full Text: PDF

DOI: 10.28991/HEF-2020-01-04-02


  • There are currently no refbacks.

Copyright (c) 2021 M Siva Kumar, R Balasubramanian