Habitat Suitability Modeling for Wildlife Management Objectives by Using Maximum Entropy Method

Abbas Naqibzadeh, Jalil Sarhangzadeh, Ahad Sotoudeh, Marjan Mashkour, Judith Thomalsky


Habitat suitability models are useful tools for a variety of wildlife management objectives. Distributions of wildlife species can be predicted for geographical areas that have not been extensively surveyed. The basis of these models' work is to minimize the relationship between species distribution and biotic and abiotic environments. For some species, there is information about presence and absence that allows the use of a variety of standard statistical methods. However, absence data is not available for most species. Nowadays, the methods that need presence-only data have been expanded. One of these methods is the Maximum Entropy (MaxEnt) model. The purpose of this study is to model the habitat of Urial (Ovis orientalis arkal) in the Samelghan plain in the North East of Iran with the MaxEnt method. This algorithm uses the Jackknife plot and percent contribution values to determine the significance of the variables. The results showed that variables such as southern aspects, Juniperus-Acer, Artemisia-Perennial plants, slope 0-5%, and asphalt road were the most important factors affecting the species’ habitat selection. The area under the curve (AUC) Receiver Operating Characteristic (ROC) showed excellent model performance. Suitable habitat was classified based on the threshold value (0.0513) and the ROC, which, based on the results, 28% of the area was a suitable habitat for Urial.


Doi: 10.28991/HEF-2021-02-04-05

Full Text: PDF


Habitat Suitability Modeling; Urial; Samelghan; Maximum Entropy.


Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. doi:10.1111/j.0906-7590.2008.5203.x.

Broekhuis, F., & Gopalaswamy, A. M. (2016). Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data. PLOS ONE, 11(5), e0153875. doi:10.1371/journal.pone.0153875.

Frishkoff, L. O., Karp, D. S., Flanders, J. R., Zook, J., Hadly, E. A., Daily, G. C., & M’Gonigle, L. K. (2016). Climate change and habitat conversion favour the same species. Ecology Letters, 19(9), 1081–1090. doi:10.1111/ele.12645.

Mark, U. C. (2015). Accelerating extinction risk from climate change. Science: American Association for the Advancement of Science, 348(6234), 571–573. doi:10.1126/science.aaa4984.

Song, W., Kim, E., Lee, D., Lee, M., & Jeon, S. W. (2013). The sensitivity of species distribution modeling to scale differences. Ecological Modelling, 248(10), 113–118. doi:10.1016/j.ecolmodel.2012.09.012.

Lobo, J. M. (2008). More complex distribution models or more representative data? Biodiversity Informatics, 5(0), 14–19. doi:10.17161/bi.v5i0.40.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. doi:10.1111/j.1472-4642.2010.00725.x.

Naqibzadeh, A., Sarhangzadeh, J., & Sayedi, N. (2021). Habitat desirability modeling of Goitered Gazelle (Gazella subgutturosa) by Ecological Niche Factor Analysis in the Bidouyeh Protected Area, Iran. Journal of Wildlife and Biodiversity, 5(4), 15-27.

Mcalister, M. A., Moorman, C. E., Meentemeyer, R. K., Fuller, J. C., Howell, D. L., & Deperno, C. S. (2017). Using landscape characteristics to predict distribution of temperate-breeding Canada geese. Southeastern Naturalist, 16(2), 127–139. doi:10.1656/058.016.0201.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. doi:10.1016/S0304-3800(00)00354-9.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. doi:10.1111/j.1461-0248.2005.00792.x.

Roloff, G. J., & Kernohan, B. J. (1999). Evaluating reliability of habitat suitability index models. Wildlife Society Bulletin, 973-985.

Long, A. M., Mathewson, H. A., & Morrison, M. L. (2021). The influence of geographic variation in vegetation characteristics on habitat use and productivity of an endangered warbler. Forest Ecology and Management, 482, 118857. doi:10.1016/j.foreco.2020.118857.

Behr, D. M., Ozgul, A., & Cozzi, G. (2017). Combining human acceptance and habitat suitability in a unified socio-ecological suitability model: a case study of the wolf in Switzerland. Journal of Applied Ecology, 54(6), 1919–1929. doi:10.1111/1365-2664.12880.

Gottschalk, T. K., Aue, B., Hotes, S., & Ekschmitt, K. (2011). Influence of grain size on species-habitat models. Ecological Modelling, 222(18), 3403–3412. doi:10.1016/j.ecolmodel.2011.07.008.

Hirzel, A. H., Helfer, V., & Metral, F. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145(2–3), 111–121. doi:10.1016/S0304-3800(01)00396-9.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. doi:10.1016/j.ecolmodel.2005.03.026.

Soberon, J., & Peterson, A. T. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics, 2, 1–10. doi:10.17161/bi.v2i0.4.

Ottaviani, D., Lasinio, G. J., & Boitani, L. (2004). Two statistical methods to validate habitat suitability models using presence-only data. Ecological Modelling, 179(4), 417–443. doi:10.1016/j.ecolmodel.2004.05.016.

Martínez, I., Carreño, F., Escudero, A., & Rubio, A. (2006). Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biological Conservation, 133(4), 500–511. doi:10.1016/j.biocon.2006.08.003.

Zaniewski, A. E., Lehmann, A., & Overton, J. M. C. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157(2–3), 261–280. doi:10.1016/S0304-3800(02)00199-0.

Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854–866. doi:10.3390/e11040854.

Mashkour M. (2013). Section C. Specialist contributions, Chapter. Animal Bones. Animal exploitation during the Iron Age to Achaemenid, Sasanian and Early Islamic periods along the Gorgan Wall. In Sauer, E., Omrani Rekavandi, H., Wilkinson, T. and Nokandeh J., Persia’s Imperial Power in Late Antiquity: The Great Gorgan Wall and the Frontier Landscapes of Sasanian Iran. British Institute of Persian Studies monograph. British Academy. Oxbow Books, Oxford, United Kingdom.

Culley, C., Janzen, A., Brown, S., Prendergast, M. E., Shipton, C., Ndiema, E., … Crowther, A. (2021). Iron Age hunting and herding in coastal eastern Africa: ZooMS identification of domesticates and wild bovids at Panga ya Saidi, Kenya. Journal of Archaeological Science, 130, 105368. doi:10.1016/j.jas.2021.105368.

Jafari, J., Thomalsky, J., Farjami, M., Jürcke, F., Lentschke, J., Maass, H., ... & Becker, F. (2016). The Iranian-German Tappe Rivi Project (TRP), North-Khorasan: Report on the 2016 and 2017 fieldworks. Archäologische Mitteilungen aus Iran und Turan, 48, 7.

Thomalsky, J. (2017). Tappeh Rivi, Iran: Die iranisch-deutschen Arbeiten des Jahres 2016. e-Forschungsberichte, 62-68..

Valdez R. (2008). Ovis Orientalis. The IUCN Red List of Threatened Species. Gland, Switzerland and Cambridge, UK. e.T15739A5076068.

Bashari, H., & Hemami, M. R. (2013). A predictive diagnostic model for wild sheep (Ovis orientalis) habitat suitability in Iran. Journal for Nature Conservation, 21(5), 319–325. doi:10.1016/j.jnc.2013.03.005.

Valdez, R., Nadler, C. F., & Bunch, T. D. (1978). Evolution of Wild Sheep in Iran. Evolution, 32(1), 56. doi:10.2307/2407410.

York, P., Evangelista, P., Kumar, S., Graham, J., Flather, C., & Stohlgren, T. (2011). A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher. Frontiers of Earth Science, 5(2), 120–129. doi:10.1007/s11707-011-0154-5.

Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A., & Parra, J. L. (2021). Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLOS ONE, 16(3), e0247876. doi:10.1371/journal.pone.0247876.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. doi:10.1111/ecog.03049.

Alwi, M., luthfi, H. M. S., & Susilo, B. (2019). MaxEnt (Maximum Entropy) model for predicting prehistoric cave sites in Karst area of Gunung Sewu, Gunung Kidul, Yogyakarta. Proc. SPIE 11311, Sixth Geoinformation Science Symposium 113110B, 3. doi:10.1117/12.2543522.

Niu, Y., Li, R., Qiu, J., Xu, X., Huang, D., Shao, Q., & Cui, Y. (2019). Identifying and predicting the geographical distribution patterns of oncomelania hupensis. International Journal of Environmental Research and Public Health, 16(12). doi:10.3390/ijerph16122206.

Tourne, D. C. M., Ballester, M. V. R., James, P. M. A., Martorano, L. G., Guedes, M. C., & Thomas, E. (2019). Strategies to optimize modeling habitat suitability of Bertholletia excelsa in the Pan-Amazonia. Ecology and Evolution, 9(22), 12623–12638. doi:10.1002/ece3.5726.

Baasch, D. M., Tyre, A. J., Millspaugh, J. J., Hygnstrom, S. E., & Vercauteren, K. C. (2010). An evaluation of three statistical methods used to model resource selection. Ecological Modelling, 221(4), 565–574. doi:10.1016/j.ecolmodel.2009.10.033.

Bassi, E., Willis, S. G., Passilongo, D., Mattioli, L., & Apollonio, M. (2015). Predicting the spatial distribution of wolf (Canis lupus) breeding areas in a mountainous region of central Italy. PLoS ONE, 10(6). doi:10.1371/journal.pone.0124698.

Waltert, M., Meyer, B., Shanyangi, M. W., Balozi, J. J., Kitwara, O., Qolli, S., Krischke, H., & Mühlenberg, M. (2008). Foot Surveys of Large Mammals in Woodlands of Western Tanzania. Journal of Wildlife Management, 72(3), 603–610. doi:10.2193/2006-456.

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. (2010). Distance software: Design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47(1), 5–14. doi:10.1111/j.1365-2664.2009.01737.x.

Gormley, A. M., Forsyth, D. M., Griffioen, P., Lindeman, M., Ramsey, D. S. L., Scroggie, M. P., & Woodford, L. (2011). Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48(1), 25–34. doi:10.1111/j.1365-2664.2010.01911.x.

Ren-Yan, D., Xiao-Quan, K., Min-Yi, H., Wei-Yi, F., & Zhi-Gao, W. (2014). The predictive performance and stability of six species distribution models. PLoS ONE, 9(11). doi:10.1371/journal.pone.0112764.

Wan, J. Z., Wang, C. J., & Yu, F. H. (2019). Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia, 74(7), 757–766. doi:10.2478/s11756-019-00215-0.

Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004 (pp. 655–662). AcM Press. doi:10.1145/1015330.1015412.

Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5), 654–657. doi:10.1161/CIRCULATIONAHA.105.594929.

Gilfillan, D., Joyner, T. A., & Scheuerman, P. (2018). Maxent estimation of aquatic Escherichia coli stream impairment. PeerJ, 2018(9), 5610. doi:10.7717/peerj.5610.

Healy, A., Lippitt, C. D., Phillips, D., & Lane, M. (2017). A comparison of suitability models to identify prehistoric agricultural fields in western New Mexico. Journal of Archaeological Science: Reports, 11, 427–434. doi:10.1016/j.jasrep.2016.12.020

Yost, A. C., Petersen, S. L., Gregg, M., & Miller, R. (2008). Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecological Informatics, 3(6), 375–386. doi:10.1016/j.ecoinf.2008.08.004.

Naqibzadeh, A., Razaei, N., Sarhangzadeh, J., & Sayedi, N. (2018). Ideal modeling of wild Sheep habitat in wildlife refuge of Burueiyeh in Yazd province by using Maximum Entropy Model (MaxEnt). Journal of Animal Environment, 10(4), 75-82.

Butterfield, B. R., Csuti, B., & Scott, J. M. (1994). Modeling vertebrate distributions for Gap Analysis. Mapping the Diversity of Nature, 53–68. doi:10.1007/978-94-011-0719-8_4.

Lawton, J. H., & Woodroffe, G. L. (1991). Habitat and the Distribution of Water Voles: Why are there Gaps in a Species’ Range? The Journal of Animal Ecology, 60(1), 79. doi:10.2307/5446.

Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modelling species distributions? Journal of Applied Ecology, 41(2), 193–200. doi:10.1111/j.0021-8901.2004.00903.x.

Full Text: PDF

DOI: 10.28991/HEF-2021-02-04-05


  • There are currently no refbacks.

Copyright (c) 2022 Abbas Naqibzadeh, Jalil Sarhangzadeh, Ahad Sotoudeh, Marjan Mashkur, Judith Thomalsky