Review of Pairing Exercises Involving a Real Event and its Virtual Model up to the Supervision of Complex Procedures

Adel Razek


Matching of a real procedure with its virtual model is performed in a variety of natural and artificial situations. The exercise of this concept in science, technology, and innovation is assessed in this review. This involves off-line as well as real-time pairing practices. The off-line case regards mainly the management and ruling of elegant theories; computing tools imitating physical paradigms; and computer-aided design. The real-time pairing concerns in particular natural phenomena, online matching devices in autonomous automated systems and in complex procedures. The article is constituted of three consequential divisions: the observation-theory framework; innovations relative to matching concepts; and observation-modeling matching in complex procedures. The paper first presents a framework for the observation-theory pair. This will highlight the complementary aspect of such a duo, its ability to validate or invalidate an elegant theory, its use to explicate an observation, and finally, how a theory can unify different observations into an elegant mathematical representation. At the end of this section, innovative computing tools that imitate physical paradigms are introduced. In the following section, the paper then illustrates recent innovations relating to the notions of pairing concerning theories addressing natural functions and design approaches in industry, as well as the task of matching virtual estimates to their actual values in automated systems. The role of the observation-modeling pair in complex procedures is then investigated in the last part. In this frame, matched twins in complex procedures are examined, highlighting the concept of the digital twin. Examples of the use of this concept are presented to illustrate the range of its applications in different domains, including energy, production, maintenance, mobility, healthcare, smart cities, etc.


Doi: 10.28991/HEF-2021-02-04-010

Full Text: PDF


Matching; Computer-Aided Design (CAD); Observation; Virtual Model; Complex Procedure; IoT, Uncertainaties.


Bates, H. W. (1862). XXXII. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera: Heliconidae. Transactions of the Linnean Society of London, 23(3), 495–566. doi:10.1111/j.1096-3642.1860.tb00146.x.

Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart Agents in Industrial Cyber-Physical Systems. Proceedings of the IEEE, 104(5), 1086–1101. doi:10.1109/JPROC.2016.2521931.

Abramovici, M., Göbel, J. C., & Savarino, P. (2017). Reconfiguration of smart products during their use phase based on virtual product twins. CIRP Annals - Manufacturing Technology, 66(1), 165–168. doi:10.1016/j.cirp.2017.04.042.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-Pap. Online, 51(11), 1016–1022. doi:10.1016/j.ifacol.2018.08.474.

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. doi:10.1016/j.cirpj.2020.02.002.

Lévi-Strauss, C. (1958) Structural anthropology. Basic Books, Paris, France.

Maurice Merleau-Ponty. (1964). L'œil et l'esprit (The eye and the spirit). Éditions Gallimard, Paris, France.

Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049–1070. doi:10.1103/PhysRev.28.1049.

Wineland, D. J., Monroe, C., Itano, W. M., Leibfried, D., King, B. E., & Meekhof, D. M. (1998). Experimental issues in coherent quantum-state manipulation of trapped atomic ions. Journal of research of the National Institute of Standards and Technology, 103(3), 259. doi:10.6028/jres.103.019.

Brune, M., Haroche, S., Raimond, J. M., Davidovich, L., & Zagury, N. (1992). Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of Schrödinger cat states. Physical Review A, 45(7), 5193–5214. doi:10.1103/PhysRevA.45.5193.

Maxwell, J. C. (1873) A Treatise on Electricity & Magnetism. Dover Publications, New York, ISBN 0-486-60636-8 (Vol. 1) & 0-486-60637-6 (Vol. 2). Available online: (accessed on December 2021).

Hall, E. H. (1879). On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3), 287-292. doi:10.2307/2369245.

Laesecke, A. (2002). Through measurement to knowledge: The inaugural lecture of Heike Kamerlingh Onnes (1882). Journal of Research of the National Institute of Standards and Technology, 107(3), 261–277. doi:10.6028/jres.107.021.

Haykin, S. (2000). Neural Networks: A Guided Tour. Soft Computing and Intelligent Systems, 71–80. doi:10.1016/b978-012646490-0/50007-x.

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., … Leblebici, Y. (2016). Neuromorphic computing using non-volatile memory. Advances in Physics: X, 2(1), 89–124. doi:10.1080/23746149.2016.1259585.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6–7), 467–488. doi:10.1007/BF02650179.

Castelvecchi, D. (2017). Quantum computers ready to leap out of the lab in 2017. Nature, 541(7635), 9–10. doi:10.1038/541009a.

Fedorov, A. K., Kiktenko, E. O., & Lvovsky, A. I. (2018). Quantum computers put blockchain security at risk. Nature, 563(7732), 465–467. doi:10.1038/d41586-018-07449-z.

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. doi:10.1016/j.tins.2004.10.007.

Penny, W. (2012). Bayesian Models of Brain and Behaviour. ISRN Biomathematics, 2012, 1–19. doi:10.5402/2012/785791.

Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: knowns and unknowns. Nature neuroscience, 16(9), 1170-1178. doi:10.1038/nn.3495.

Hohwy, J. (2017). Priors in perception: Top-down modulation, Bayesian perceptual learning rate, and prediction error minimization. Consciousness and Cognition, 47, 75–85. doi:10.1016/j.concog.2016.09.004.

Rodríguez, A. A., Bertolazzi, E., Ghiloni, R., & Valli, A. (2013). Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems. SIAM Journal on Numerical Analysis, 51(4), 2380–2402. doi:10.1137/120890648.

Ren, Z., & Razek, A. (1993). Boundary edge elements and spanning tree technique in three‐dimensional electromagnetic field computation. International Journal for Numerical Methods in Engineering, 36(17), 2877–2893. doi:10.1002/nme.1620361703.

Ying, P., Jiangjun, R., Yu, Z., & Yan, G. (2007). A composite grid method for moving conductor eddy-current problem. IEEE Transactions on Magnetics, 43(7), 3259–3265. doi:10.1109/TMAG.2007.892793.

Rapetti, F., Maday, Y., Bouillault, F., & Razek, A. (2002). Eddy-current calculations in three-dimensional moving structures. IEEE Transactions on Magnetics, 38(2 I), 613–616. doi:10.1109/20.996160.

Sun, Q., Zhang, R., Zhan, Q., & Liu, Q. H. (2019). 3-D implicit-explicit hybrid finite difference/spectral element/finite element time domain method without a buffer zone. IEEE Transactions on Antennas and Propagation, 67(8), 5469–5476. doi:10.1109/TAP.2019.2913740.

Carpes, W. P., Pichon, L., & Razek, A. (2000). 3D finite element method for the modelling of bounded and unbounded electromagnetic problems in the time domain. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 13(6), 527–540. doi:10.1002/1099-1204(200011/12)13:6<527::AID-JNM391>3.0.CO;2-V.

Sun, X., Cheng, M., Zhu, S., & Zhang, J. (2012). Coupled electromagnetic-thermal-mechanical analysis for accurate prediction of dual-mechanical-port machine performance. IEEE Transactions on Industry Applications, 48(6), 2240–2248. doi:10.1109/TIA.2012.2226859.

Ren, Z., & Razek, A. (1990). A Coupled Electromagnetic - Mechanical Model for Thin Conductive Plate Deflection Analysis. IEEE Transactions on Magnetics, 26(5), 1650–1652. doi:10.1109/20.104477.

Hafner, M., Finken, T., Felden, M., & Hameyer, K. (2011). Automated virtual prototyping of permanent magnet synchronous machines for HEVs. IEEE Transactions on Magnetics, 47(5), 1018–1021. doi:10.1109/TMAG.2010.2091675.

Razek, A. (2020). The elegant theory, the observed societal reality and the potentialities of coupled models. International Symposium on Numerical Modeling towards Digital Twin in Electrical Engineering. Beijing, China, January 5 to 7, 2020.

Xu, D., Wang, B., Zhang, G., Wang, G., & Yu, Y. (2020). A review of sensorless control methods for AC motor drives. CES Transactions on Electrical Machines and Systems, 2(1), 104–115. doi:10.23919/tems.2018.8326456.

Soto, G. G., Mendes, E., & Razek, A. (1999). Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique. IEE Proceedings-Electric Power Applications, 146(3), 282-288. doi:10.1049/ip-epa:19990293.

Alonge, F., D’Ippolito, F., & Sferlazza, A. (2014). Sensorless control of induction-motor drive based on robust Kalman filter and adaptive speed estimation. IEEE Transactions on Industrial Electronics, 61(3), 1444–1453. doi:10.1109/TIE.2013.2257142.

El Moucary, C., Mendes, E., & Razek, A. (2002). Decoupled direct control for PWM inverter-fed induction motor drives. IEEE transactions on industry applications, 38(5), 1307-1315. doi:10.1109/TIA.2002.803010.

Holtz, J., & Juntao Quan. (2003). Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors. IEEE Transactions on Industry Applications, 39(4), 1052–1060. doi:10.1109/tia.2003.813726.

Ortega, R., Aranovskiy, S., Pyrkin, A. A., Astolfi, A., & Bobtsov, A. A. (2021). New Results on Parameter Estimation via Dynamic Regressor Extension and Mixing: Continuous and Discrete-Time Cases. IEEE Transactions on Automatic Control, 66(5), 2265–2272. doi:10.1109/TAC.2020.3003651.

Mendes, E., Baba, A., & Razek, A. (1995). Losses minimization of a field oriented controlled induction machine. IEEE Conference Publication (Issue 412, pp. 310–314). doi:10.1049/cp:19950885.

Razek, A. (2018). Towards an image-guided restricted drug release in friendly implanted therapeutics. EPJ Applied Physics, 82(3), 31401. doi:10.1051/epjap/2018180201.

Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems (pp. 85-113). Springer, Cham. doi:10.1007/978-3-319-38756-7_4.

Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Z., Lu, S. C. Y., & Nee, A. Y. C. (2019). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935–3953. doi:10.1080/00207543.2018.1443229.

He, B., & Bai, K. J. (2021). Digital twin-based sustainable intelligent manufacturing: A review. Advances in Manufacturing, 9(1), 1-21. doi:10.1007/s40436-020-00302-5.

Cai, Y., Starly, B., Cohen, P., & Lee, Y. S. (2017). Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing. Procedia Manufacturing, 10, 1031–1042. doi:10.1016/j.promfg.2017.07.094.

Selçuk, Ş. Y., Ünal, P., Albayrak, Ö., & Jomâa, M. (2021). A workflow for synthetic data generation and predictive maintenance for vibration data. Information (Switzerland), 12(10), 386. doi:10.3390/info12100386.

Montero Jimenez, J. J., Schwartz, S., Vingerhoeds, R., Grabot, B., & Salaün, M. (2020). Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Journal of Manufacturing Systems, 56, 539–557. doi:10.1016/j.jmsy.2020.07.008.

Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences (Switzerland), 11(6), 2546. doi:10.3390/app11062546.

Liu, Z., Meyendorf, N., & Mrad, N. (2018). The role of data fusion in predictive maintenance using digital twin. AIP Conference Proceedings, 1949. doi:10.1063/1.5031520.

Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access, 7, 49088–49101. doi:10.1109/ACCESS.2019.2909828.

Kamel Boulos, M. N., & Zhang, P. (2021). Digital twins: From personalised medicine to precision public health. Journal of Personalized Medicine, 11(8), 745. doi:10.3390/jpm11080745.

Holmes, D., Papathanasaki, M., Maglaras, L., Ferrag, M. A., Nepal, S., & Janicke, H. (2021). Digital Twins and Cyber Security – solution or challenge? Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM, 1–8). doi:10.1109/seeda-cecnsm53056.2021.9566277.

Gehrmann, C., & Gunnarsson, M. (2020). A digital twin based industrial automation and control system security architecture. IEEE Transactions on Industrial Informatics, 16(1), 669–680. doi:10.1109/TII.2019.2938885.

Brosinsky, C., Westermann, D., & Krebs, R. (2018). Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers. 2018 IEEE International Energy Conference, ENERGYCON 2018, 1–6. doi:10.1109/ENERGYCON.2018.8398846.

Boschert, S., & Rosen, R. (2016). Digital twin-the simulation aspect. Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers. Springer. doi:10.1007/978-3-319-32156-1_5.

Bhatti, G., Mohan, H., & Raja Singh, R. (2021). Towards the future of smart electric vehicles: Digital twin technology. Renewable and Sustainable Energy Reviews, 141, 110801. doi:10.1016/j.rser.2021.110801.

Chen, X., Min, X., Li, N., Cao, W., Xiao, S., Du, G., & Zhang, P. (2021). Dynamic safety measurement-control technology for intelligent connected vehicles based on digital twin system. Vibroengineering Procedia, 37, 78–85. doi:10.21595/vp.2021.21990.

Neethirajan, S., & Kemp, B. (2021). Digital twins in livestock farming. Animals, 11(4), 1008. doi:10.3390/ani11041008.

Shirowzhan, S., Tan, W., & Sepasgozar, S. M. E. (2020). Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. ISPRS International Journal of Geo-Information, 9(4), 240. doi:10.3390/ijgi9040240.

Razek, A. (2020). Pragmatic Association of the Two Evaluation Concepts of Operational Observation and Mathematical Modeling. Athens Journal of Sciences, 8(1), 23–36. doi:10.30958/ajs.8-1-2.

Razek, A. (2021). Pertinence of Predictive Models as Regards the Behavior of Observed Biological and Artificial Phenomena. Athens Journal of Health and Medical Sciences, 8(3), 189–200. doi:10.30958/ajhms.8-3-3.

Hamilton, F., Lloyd, A. L., & Flores, K. B. (2017). Hybrid modeling and prediction of dynamical systems. PLoS Computational Biology, 13(7), 1005655. doi:10.1371/journal.pcbi.1005655.

Razek, A. Analysis of the Properties of Smart Theories and Their Revisited Realistic Modeling. International Journal of Cultural Heritage, 6, 1–5. Available online: (accessed on December 2021).

Gelernter, D. (1993). Mirror worlds: Or the day software puts the universe in a shoebox... How it will happen and what it will mean. Oxford University Press, Oxford, United Kingdom.

Tao, F., & Qi, Q. (2019). Make more digital twins. Nature, 573(7775), 490–491. doi:10.1038/d41586-019-02849-1.

Boy, G. A. (2020). Human–systems integration: from virtual to tangible. CRC Press, Florida, United States. doi:10.1201/9780429351686.

Zhuang, C., Miao, T., Liu, J., & Xiong, H. (2021). The connotation of digital twin, and the construction and application method of shop-floor digital twin. Robotics and Computer-Integrated Manufacturing, 68, 1–16. doi:10.1016/j.rcim.2020.102075.

Perrow, C. (2011) Normal Accidents: Living with High Risk Technologies - Updated Edition. Princeton University Press, New Jersey, United States. doi:10.2307/j.ctt7srgf.

Full Text: PDF

DOI: 10.28991/HEF-2021-02-04-010


  • There are currently no refbacks.

Copyright (c) 2021 Adel Razek