Intelligence in Light of Perspectivalism: Lessons from Octopus Intelligence and Artificial Intelligence

Christian Hugo Hoffmann


This paper pursues the question of where we stand today in making sense of "intelligence". Even though definitions of intelligence have been provided over many years in different fields and disciplines such as psychology, neuroscience, and computer science, these crude approaches often turn out to be overly systematic, rigid, and reductive. Moreover, as we argue here, much work on intelligence suffers from the bias of using humans as a yardstick and/or of focusing on human intelligence at the expense of acknowledging other, i.e., non-human forms of intelligence. By means of a concise literature review and case study analysis, the objective of this paper is to pave the ground for overcoming our anthropocentrism and appreciating the wonders of intelligence in nonhuman and non-biological animals instead. For that reason, we study two cases of octopus intelligence and intelligence in machine learning systems to embrace the notion of intelligence as a non-unitary faculty with pluralistic forms. Furthermore, we derive lessons for advancing our human self-understanding.


Doi: 10.28991/HEF-2022-03-03-03

Full Text: PDF


Intelligence; Multiple Intelligences; Octopi; Machine Learning; Pluralism.


Nieder, A., Wagener, L., & Rinnert, P. (2020). A neural correlate of sensory consciousness in a corvid bird. Science, 369(6511), 1626–1629. doi:10.1126/science.abb1447.

Menzel, R. (2021). A short history of studies on intelligence and brain in honeybees. Apidologie, 52(1), 23–34. doi:10.1007/s13592-020-00794-x.

Hoffmann, C. H. (2022). Is AI intelligent? An assessment of artificial intelligence, 70 years after Turing. Technology in Society, 68, 101893. doi:10.1016/j.techsoc.2022.101893.

Hoffmann, C. H. (2022). Human Intelligence and Exceptionalism Revisited by a Philosopher: 100 Years After'Intelligence and its Measurement'. Journal of Consciousness Studies, 29(11-12), 56-79. doi:.10.53765/20512201.29.11.056.

Pietschnig, J. (2021). Intelligence: How smart are we really?. ecoWing, Elsbethen, Austria. (In German).

Jelbert, S. A., Miller, R., Schiestl, M., Boeckle, M., Cheke, L. G., Gray, R. D., Taylor, A. H., & Clayton, N. S. (2019). New Caledonian crows infer the weight of objects from observing their movements in a breeze. Proceedings of the Royal Society B: Biological Sciences, 286(1894), 20182332. doi:10.1098/rspb.2018.2332.

Godfrey-Smith, P. (2018). Other minds: The octopus and the evolution of intelligent life. William Collins, London, United Kingdom.

The Guardian. (2022). Octopi were around before dinosaurs, fossil find suggests. Available online: science/2022/mar/08/octopuses-were-around-before-dinosaurs-fossil-find-suggests (Accessed on March 2022).

Huebner, B. (2017). Kinds of Collective Behavior and the Possibility of Group Minds 1 (1st Ed.). The Routledge Handbook of Philosophy of Animal Minds, 390-397, Routledge, Abingdon, United Kingdom.

Montgomery, S. (2016). The soul of an octopus: A surprising exploration into the wonder of consciousness. Atria Books, New York, united States.

Scales, H. (2020). How many hearts does an octopus have? BBC Science Focus Magazine. Available online: (Accessed on August 2022).

Humphrey, N. K. (1976). The social function of intellect. Growing points in ethology, 37, 303-317, Cambridge University Press, Cambridge, United Kingdom.

Dunbar, R. I. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 6(5), 178-190. doi:10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8.

Fox, K. C. R., Muthukrishna, M., & Shultz, S. (2017). The social and cultural roots of whale and dolphin brains. Nature Ecology and Evolution, 1(11), 1699–1705. doi:10.1038/s41559-017-0336-y.

Sternberg, R. J. (2019). A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence, 7(4), 7040023. doi:10.3390/jintelligence7040023.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

Olkowicz, S., Kocourek, M., Luèan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Nemec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7255–7260. doi:10.1073/pnas.1517131113.

Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9780511843600.

Shigeno, S., Andrews, P. L. R., Ponte, G., & Fiorito, G. (2018). Cephalopod brains: An overview of current knowledge to facilitate comparison with vertebrates. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00952.

Godfrey-Smith, P. (2017). The Mind of an Octopus. Eight smart limbs plus a big brain add up to a weird and wondrous kind of intelligence. Scientific American. Available online: (Accessed on August 2022).

Boal, J. G., Dunham, A. W., Williams, K. T., & Hanlon, R. T. (2000). Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). Journal of Comparative Psychology, 114(3), 246–252. doi:10.1037/0735-7036.114.3.246.

Richter, J. N., Hochner, B., & Kuba, M. J. (2016). Pull or push? Octopuses solve a puzzle problem. PLoS ONE, 11(3), 152048. doi:10.1371/journal.pone.0152048.

Anderson, R. C., & Mather, J. A. (2010). It’s all in the cues: octopuses (Enteroctopus dofleini) learn to open jars. Ferrantia, 59, 8-13. doi:10.1080/10888705.2010.483892.

Fiorito, G., Biederman, G. B., Davey, V. A., & Gherardi, F. (1998). The role of stimulus preexposure in problem solving by Octopus vulgaris. Animal Cognition, 1(2), 107–112. doi:10.1007/s100710050015.

Fiorito, G., von Planta, C., & Scotto, P. (1990). Problem solving ability of Octopus vulgaris lamarck (Mollusca, Cephalopoda). Behavioral and Neural Biology, 53(2), 217–230. doi:10.1016/0163-1047(90)90441-8.

Abramson, C. I., & Wells, H. (2018). An Inconvenient Truth: Some Neglected Issues in Invertebrate Learning. Perspectives on Behavior Science, 41(2), 395–416. doi:10.1007/s40614-018-00178-8.

Bradley, E. A. (1974). Some observations of Octopus joubini reared in an inland aquarium. Journal of Zoology, 173(3), 355–368. doi:10.1111/j.1469-7998.1974.tb04120.x.

Browning, H. (2019). What is good for an octopus? Animal Sentience, 4(26). doi:10.51291/2377-7478.1476.

Hoffmann, C. H. (2022). The Quest for a Universal Theory of Intelligence. Walter de Gruyter, Berlin, Germany. doi:10.1515/9783110756166.

Sebeok, T. A., & Rosenthal, R. E. (1981). The Clever Hans phenomenon: Communication with horses, whales, apes, and people. Annals of the New York Academy of Sciences, 364, 309.

Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537–537. doi:10.1038/35046199.

Semmens, J. M., Pecl, G. T., Villanueva, R., Jouffre, D., Sobrino, I., Wood, J. B., & Rigby, P. R. (2004). Understanding octopus growth: Patterns, variability and physiology. Marine and Freshwater Research, 55(4), 367–377. doi:10.1071/MF03155.

Jelbert, S.A., Taylor, A.H., Cheke, L.G., Clayton, N.S., & Gray, R.D. (2014). Using the aesop’s fable paradigm to investigate causal understanding of water displacement by new caledonian crows. PLoSONE, 9(3), 92895. doi:10.1371/journal.pone.0092895.

Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), 1069– 1070. doi:10.1016/j.cub.2009.10.052.

Godfrey-Smith, P. (2013). Cephalopods and the evolution of the mind. Pacific Conservation Biology, 19(1), 4–9. doi:10.1071/PC130004.

Staddon, J. E. R. (2016). Adaptive Behavior and Learning. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9781139998369.

Amodio, P., Boeckle, M., Schnell, A. K., Ostojíc, L., Fiorito, G., & Clayton, N. S. (2019). Grow Smart and Die Young: Why Did Cephalopods Evolve Intelligence? Trends in Ecology and Evolution, 34(1), 45–56. doi:10.1016/j.tree.2018.10.010.

Haugeland, J. (1997). Mind design II: Philosophy, psychology, and artificial intelligence. MIT press, Cambridge, United States. doi:10.7551/mitpress/4626.001.0001

Köhler, W. (2018). The Mentality of Apes. Liveright Publishing, New York City, United States. doi:10.4324/9781351294966.

Levesque, H. J. (2017). Common Sense, the Turing Test, and the Quest for Real AI. MIT Press, Cambridge, United States. doi:10.7551/mitpress/10909.001.0001.

Silver, D., & Hassabis, D. (2016). AlphaGo: Mastering the ancient game of Go with Machine Learning. Google AI Blog. Available online: (Accessed on August 2022).

Kautz, H. A. (2022). The third AI summer: AAAI Robert S. Engel more Memorial Lecture. AI Magazine, 43(1), 105–125. doi:10.1002/aaai.12036.

Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Penguin, London, United Kingdom.

Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press, Boston, United States.

Block, N. (1981). Psychologism and Behaviorism. The Philosophical Review, 90(1), 5. doi:10.2307/2184371.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359. doi:10.1038/nature24270.

Tegmark, M. (2018). Life 3.0. Being human in the age of Artificial Intelligence. Penguin, London, United Kingdom.

Clark, A. (2016). Surfing Uncertainty. Prediction, Action, And the Embodied Mind. Oxford University Press, Northamptonshire, United Kingdom.

Hoffmann, C. H. (2018). Prediction machines-The simple economics of Artificial Intelligence. Harvard Business Review Press, Boston, United States.

Hoffmann, C. H., & Dahlinger, A. (2020). How capitalism abolishes itself in the digital era in favour of robo-economic systems: socio-economic implications of decentralized autonomous self-owned businesses. Foresight, 22(1), 53–67. doi:10.1108/FS-03-2019-0014.

Newell, A., & Simon, H. A. (1975). Computer science as empirical inquiry: symbols and search. ACM Turing Award Lectures, 1975. doi:10.1145/1283920.1283930.

Hugo Hoffmann, C. (2022). Nietzschean Perspectives on Intelligence: In Need of More Plurality for Making Sense of Intelligence. Journal of AI Humanities, 10, 9–52. doi:10.46397/jaih.10.1.

Robinson, A. (2020). The code-breakers who led the rise of computing. Nature, 586(7830), 492–493. doi:10.1038/d41586-020-02937-7.

Winograd, T. (1972). Understanding Natural Language. Academic Press, Cambridge, United States.

Nilsson, N. (1984). Shakey The Robot. Technical Note 323, Computer Science and Technology Division, SRI International, AI Center, Menlo Park, United States.

Rajani, S. (2011). Artificial Intelligence – Man or Machine. International Journal of Information Technology and Knowledge Management, 4(1), 173–176.

Matthen, M. (2017). Novel Colours in Animal Perception. The Routledge Handbook of Philosophy of Animal Minds (1st Ed.), Routledge, Abingdon, United Kingdom.

Jensen, A. R. (1999). The G factor: The science of mental ability. Psycoloquy, 10. doi:10.5860/choice.36-2443.

Abramson, C. I., & Levin, M. (2021). Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Communicative and Integrative Biology, 14(1), 230–247. doi:10.1080/19420889.2021.2005863.

Abramson, C. I., Dinges, C. W., & Wells, H. (2016). Operant conditioning in honey bees (Apis mellifera L): The cap pushing response. PLoS ONE, 11(9), 162347. doi:10.1371/journal.pone.0162347.

Abramson, C. I. (2013). Problems of teaching the behaviorist perspective in the cognitive revolution. Behavioral Sciences, 3(1), 55–71. doi:10.3390/bs3010055.

Full Text: PDF

DOI: 10.28991/HEF-2022-03-03-03


  • There are currently no refbacks.

Copyright (c) 2022 Christian Hugo Hoffmann