Post Occupancy Evaluation of Ventilation Coefficient Desired for Thermal Comfort in Educational Facilities

Emeka J. Mba, Francis O. Okeke, Emmanuel C. Ezema, Peter I. Oforji, Chinelo A. Ozigbo


In tropical regions, one sustainable measure identified to attain thermal comfort and energy savings for interior spaces is natural ventilation. However, the ventilation coefficient as a factor for effective passive ventilation required for thermal comfort in educational facilities in warm, humid climates has not been adequately investigated. This study is a post-occupancy evaluation aimed at investigating the ventilation coefficient as a parameter for effective passive ventilation efficiency for good thermal comfort in the classrooms of public primary school buildings in Enugu Metropolis, Nigeria. Among the data collection instruments are two data logging devices (thermo-anemometers -AZ 9871) used to measure air velocity, humidity levels, and temperature outside and inside the classrooms of 60 government primary school buildings in the study area. This selection was based on stratified random sampling techniques. For data analysis, the global ventilation coefficient and linear regression analysis were used. The findings demonstrate that the average natural ventilation efficiency was 80%, which is higher than the global ventilation efficiency standard of 60%. The research results further highlight that colonial classroom prototype buildings have a lower temperature value and ventilation coefficient of 83%, which in turn influenced the thermal comfort conditions of the classrooms investigated. The significance of this study is that the findings contribute to the existing knowledge base that would advance strategic policy formation towards acceleration of the uptake of sustainable and energy-efficient building designs for educational facilities in warm, humid tropical environments.


Doi: 10.28991/HEF-2023-04-01-07

Full Text: PDF


Educational Facilities; Passive Ventilation, Post-occupancy Evaluation; Ventilation Coefficient.


Okeke, F. O., Eziyi, I. O., Udeh, C. A., & Ezema, E. C. (2020). City as habitat; Assembling the fragile city. Civil Engineering Journal (Iran), 6(6), 1143–1154. doi:10.28991/cej-2020-03091536.

IPCC WGII. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland.

Sampson, A. P., Weli, V. E., Nwagbara, M. O., & Eludoyin, O. S. (2021). Sensations of Air Temperature Variability and Mitigation Strategies in Urban Environments. Journal of Human, Earth, and Future, 2(2), 100–113. doi:10.28991/HEF-2021-02-02-02.

Guan, K. K. (2011). Surface and ambient air temperatures associated with different ground material: a case study at the University of California, Berkeley. Environmental Science, 196, 1-14.

Igwe, A. E., Ezeobi, A. A., Okeke, F. O., Ibem, E. O., Ezema, E. C. (2023). Causes and remedies of sick building syndrome: a systematic review. 4th International Conference on Energetics, Civil and Agricultural Engineering, 12-14 October, 2023, Tashkent, Uzbekistan.

Okpalike, C., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Igwe, A. E. (2022). Effects of Renovation on Ventilation and Energy Saving in Residential Building. Civil Engineering Journal, 7, 124–134. doi:10.28991/cej-sp2021-07-09.

Igwe, A. E., Ezema, E. C., Okeke, F. O., & Okpalike, C. (2022). Architectural Mitigating Strategies for Air Pollution in the Built Environment. IOP Conference Series: Earth and Environmental Science, 1054(1), 012046. doi:10.1088/1755-1315/1054/1/012046.

Doi, R. (2022). Are New Residential Areas Cooler than Older Ones?. Emerging Science Journal, 6(6), 1346-1357. doi:10.28991/ESJ-2022-06-06-08.

Ojosu, J. O. (1988). Climatic Data and Solar Energy Resources as Design Tools for Modeling Low Energy and Climate-Responsive Architecture in Nigeria. Proceedings of the National Seminar on Architecture, Climate and the Environment, Nigerian Building & Road Research Institute (NBRRI), 12-14 October (1988), Lagos, Nigeria.

Nielsen, A. C. (2001). Designing Quality Learning Spaces: Ventilation and Indoor Air Quality. Ministry of Education. BRANZ Ltd., Porirua, New Zealand.

Faye, C. (2022). Comparative Analysis of Meteorological Drought based on the SPI and SPEI Indices. HighTech and Innovation Journal, 3(Special Issue), 15-27. doi:10.28991/HIJ-SP2022-03-02.

Nwalusi, D. M., & Okeke, F. O. (2021). Adoption of appropriate technology for building construction in the tropics; A case of Nigeria. IOP Conference Series: Earth and Environmental Science, 730(1), 12013. doi:10.1088/1755-1315/730/1/012013.

Mba, E. J., Sam-amobi, C. G., & Okeke, F. O. (2022). An Assessment of Orientation on Effective Natural Ventilation for Thermal Comfort in Primary School Classrooms in Enugu City, Nigeria. European Journal of Sustainable Development, 11(2), 114. doi:10.14207/ejsd.2022.v11n2p114.

CSTB. (1992). Guide to natural air conditioning of homes in humid tropical climates - Methodology for taking into account climatic parameters in homes and practical advice. Centre Scientifique et technique Du Batiment, Practiques, Paris, France. (In French).

Mba, E. J., Okeke, F. O., & Okoye, U. (2021). Effects of wall openings on effective natural ventilation for thermal comfort in classrooms of primary schools in Enugu Metropolis, Nigeria. JP Journal of Heat and Mass Transfer, 22(2), 269–304. doi:10.17654/HM022020269.

Kumar, D., Soni, A., & Kumar, M. (2022). Retrieval of Land Surface Temperature from Landsat-8 Thermal Infrared Sensor Data. Journal of Human, Earth, and Future, 3(2), 159-168. doi:10.28991/HEF-2022-03-02-02.

Sharma, A., Saxena, A., Sethi, M., Shree, V., & Varun. (2011). Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews, 15(1), 871–875. doi:10.1016/j.rser.2010.09.008.

Baiyewu, O. (2002). Post-occupancy evaluation: the missing link in Nigerian architectural practice. A Journal of Environmental Technology in School of Environmental Technology, 1(2), 49-55.

Cochran Hameen, E., Ken-Opurum, B., & Son, Y. J. (2020). Protocol for Post Occupancy Evaluation in Schools to Improve Indoor Environmental Quality and Energy Efficiency. Sustainability, 12(9), 3712. doi:10.3390/su12093712.

Riley, M., Kokkarinen, N., & Pitt, M. (2010). Assessing post occupancy evaluation in higher education facilities. Journal of Facilities Management, 8(3), 202–213. doi:10.1108/14725961011058839.

SCI-Network. (2012) An Insight into Post Occupancy Evaluation; Technical Report; SCI-Network: Freiburg im Breisgau, BadenWürttemberg, Germany, 1-19. Available online: Resource_Centre/ Reports/ SCIN_POE_final_report_-_June_2012.pdf (accessed on November 2022).

Taiwo, K (2022). With N4.68 trillion Budget Allocation in 6 Years, Nigeria’s Education Sector Struggles to Improve. Available online: (accessed on January 2023).

Hassanain, M. A., Alamoudi, A., Al-Hammad, A. M., & Abdallah, A. (2020). Barriers to the implementation of POE practices in the Saudi Arabian building industry. Architectural Engineering and Design Management, 16(2), 150–165. doi:10.1080/17452007.2019.1706440.

Ahmed, H., Edwards, D. J., Lai, J. H. K., Roberts, C., Debrah, C., Owusu-Manu, D.-G., & Thwala, W. D. (2021). Post Occupancy Evaluation of School Refurbishment Projects: Multiple Case Study in the UK. Buildings, 11(4), 169. doi:10.3390/buildings11040169.

Macintosh, A., & Steemers, K. (2005). Ventilation strategies for urban housing: Lessons from a PoE case study. Building Research & Information, 33(1), 17–31. doi:10.1080/0961321042000322771.

Morgenstern, P. (2018). An in-use comparison of classroom ventilation strategies in recently built schools. CIBSE Technical Symposium London South Bank University (LSBU) 12-13 April, 2018, London, United Kingdom.

Khamidi, M. F., Wahab, S. N. A., & Zahari, N. M. (2013). Post occupancy evaluation (POE) and indoor environmental quality (IEQ) assessment: A case study of Universiti Teknologi Petronas new academic complex. Journal of Design+ Built, 6.

Okafor, M. U., Awuzie, B. O., Otasowie, K., Marcel-Okafor, U., & Aigbavboa, C. (2022). Evaluation of Indoor Thermal Comfort Conditions of Residential Traditional and Modern Buildings in a Warm-Humid Climate. Sustainability (Switzerland), 14(19), 12138. doi:10.3390/su141912138.

Ajibola, K. (1994). An Evaluation of Thermal and Visual Comfort in Classrooms in a Warm Humid Climate: A Case Study of Ile-Ife, Nigeria. Proceedings of International Congress on Energy and Environments, 26-28 October, Croatia.

Ikechukwu, O., Lin, L. Z., Moses, I. O., & Moses, O. (2019). Towards Enhancing the Effectiveness of Classroom Designs for Natural Ventilation Comfort in Yola, Nigeria. Open Journal of Energy Efficiency, 08(03), 129–148. doi:10.4236/ojee.2019.83008.

Okeke, F. O., Sam-amobi, C. G., & Okeke, F. I. (2020). Role of local town planning authorities in building collapse in Nigeria: evidence from Enugu metropolis. Heliyon, 6(7), 4361. doi:10.1016/j.heliyon.2020.e04361.

Okeke, F. O., Okosun, A. E., Udeh, C. A., & Okekeogbu, C. J. (2020). Cities for people: The dependency & impact of automobile in the life of city dwellers. European Journal of Sustainable Development, 9(3), 157–178. doi:10.14207/ejsd.2020.v9n3p157.

Okeke, F. O., Echendu, I. F., & Nnaemeka-Okeke, R. C. (2021). Determinants of Intra-Urban Travel in Southeast Nigeria, Evidence From the City of Enugu. Transport Problems, 16(4), 185–198. doi:10.21307/TP-2021-070.

Anyadike, R. C. N. (2002) Climate and Vegetation: A survey of Igbo Nation. Africa First Publishers Ltd, Onitsha, Nigeria.

BILCO. (2021) The case for Natural Ventilation. Architect Magazine of the Journal of the American Institute of Architects. Available online: (accessed on February 2023).

Omrani, S., Garcia-Hansen, V., Capra, B. R., & Drogemuller, R. (2017). Effect of natural ventilation mode on thermal comfort and ventilation performance: Full-scale measurement. Energy and Buildings, 156, 1–16. doi:10.1016/j.enbuild.2017.09.061.

Gratia, E., Bruyère, I., & De Herde, A. (2004). How to use natural ventilation to cool narrow office buildings. Building and Environment, 39(10), 1157–1170. doi:10.1016/j.buildenv.2004.02.005.

Rajapaksha, I. (2004). Passive cooling in the tropics: a design proposition for natural ventilation. Built environments and environmental buildings: Proceedings of the 21st International conference Passive and Low Energy Architecture, 19-22 September, 2004, Eindhoven, Netherlands.

BRECSU - ECG. (1993). Energy Consumption Guide 19. Energy Efficiency in Offices. Energy Efficiency in Office/HMSO, Watford, United Kingdom.

Chan, S. C., Che-Ani, A. I., & Nik Ibrahim, N. L. (2013). Passive designs in sustaining natural ventilation in school office buildings in Seremban, Malaysia. International Journal of Sustainable Built Environment, 2(2), 172–182. doi:10.1016/j.ijsbe.2014.01.002.

Melaragno, M. (1982). Wind in architectural and environmental design. Van Nostrand Reinhold Company, New York, United States.

Groat, L. N., & Wang, D. (2013). Architectural research methods. John Wiley & Sons, Hoboken, United States.

Cochran, W. G. (1997). Sampling techniques. John Wiley & Sons, Hoboken, United States.

Tanabe, S. ichi, & Kimura, K. ichi. (1994). Effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions. ASHRAE Transactions, 100(2), 953–969.

Ajibola, K. (1997). Ventilation of spaces in a warm, humid climate - Case study of some housing types. Renewable Energy, 10(1), 61–70. doi:10.1016/0960-1481(95)00128-X.

Kwok, A. G. (1998). Thermal comfort in tropical classrooms. ASHRAE Transaction. 1998, 104, 1031–1047

Nnaemeka-Okeke, R. C., Okeke, F. O., Okwuosa, C. C., & Sam-Amobi, C. (2019). Bioclimatic Design Strategies for Residential Buildings in Warm Humid Tropical Climate of Enugu, Nigeria. International Journal of Strategic Research in Education, Technology and Humanities, 6(2), 40–49.

Oforji, P. I., Mba, E. J., & Okeke, F. O. (2023). The Effects of Rhythm on Building Openings and Fenestrations on Airflow Pattern in Tropical Low-Rise Residential Buildings. Civil Engineering Journal, 9(8), 2062–2084. doi:10.28991/cej-2023-09-08-016.

Szokolay, S. V. (1990). Design and research issues: passive control in the tropics. Proceedings First World Renewable Energy Congress, 23-28, September, 1990, Reading, United Kingdom.

Nwalusi, D. M., Obi, N. I., Chendo, I. G., & Okeke, F. O. (2022). Climate Responsive Design Strategies for Contemporary Lowrise Residential Buildings in Tropical Environment of Enugu, Nigeria. IOP Conference Series: Earth and Environmental Science, 1054(1), 12052. doi:10.1088/1755-1315/1054/1/012052.

Full Text: PDF

DOI: 10.28991/HEF-2023-04-01-07


  • There are currently no refbacks.

Copyright (c) 2023 Emeka J. Mba, Francis O. Okeke, Emmanuel C. Ezema, Peter I. Oforji, Chinelo A. Ozigbo