Time Series Clustering Analysis for Increases Food Commodity Prices in Indonesia Based on K-Means Method
Downloads
Doi: 10.28991/HEF-2024-05-03-02
Full Text: PDF
World Bank. (2022). Is a Global Recession Imminent? World Bank, Washington, D.C., United States. Available online: https://www.worldbank.org/en/research/brief/global-recession (accessed on May 2024).
BPS-Statistics Indonesia. (2022). The year-on-year (y-on-y) inflation in October 2022 was 5.71 percent. The highest inflation saw in Tanjung Selor at 9.11 percent. Badan Pusat Statistik (BPS - Statistics Indonesia), Jakarta, Indonesia. Available online: https://www.bps.go.id/en/pressrelease/2022/11/01/1866/the-year-on-year--y-on-y--inflation-in-october-2022-was-5-71-percent--the-highest-inflation-saw-in-tanjung-selor-at-9-11-percent-.html (accessed on May 2024).
Punhani, A., Faujdar, N., Mishra, K. K., & Subramanian, M. (2022). Binning-Based Silhouette Approach to Find the Optimal Cluster Using K-Means. IEEE Access, 10, 115025–115032. doi:10.1109/ACCESS.2022.3215568.
Malau, L. R. E., Rambe, K. R., Ulya, N. A., & Purba, A. G. (2023). The impact of climate change on food crop production in Indonesia. Jurnal Penelitian Pertanian Terapan, 23(1), 34–46. doi:10.25181/jppt.v23i1.2418.
Nugraheni, M.Sc., R. D., & Inayah, I. (2022). Impact of the COVID-19 pandemic on world oil and food prices: VECM analysis. Jurnal Ekonomi Dan Pembangunan, 30(1), 15–29. doi:10.14203/jep.30.1.2022.15-29.
Rachmawati, R. A., Saragih, H. J. R., Yanca, I. G. S. K., & Widodo, P. (2022). Analysis of the Threat of Rising Food Prices in Indonesia Due to the Russian-Ukrainian War During the Covid-19 Pandemic. Jurnal Kewarganegaraan, 7(1), 1247.
Ariani, M., & Suryana, A. (2023). Center for Behavioral and Circular Economics Research. National Research and Innovation Agency Jalan Gatot Subroto, 21(1), 1–20. doi:10.21082/akp.v21n1.2023.1-20.
Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678–693. doi:10.1016/j.patcog.2010.09.013.
Maharaj, E. A., D'Urso, P., & Caiado, J. (2019). Time series clustering and classification. Chapman and Hall/CRC, London, United Kingdom. doi:10.1201/9780429058264.
Chen, Y. T., & Witten, D. M. (2022). Selective inference for k-means clustering. Journal of Machine Learning Research (JMLR), 24(152), 1-41.
Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110. doi:10.1016/j.engappai.2022.104743.
Izakian, H., Pedrycz, W., & Jamal, I. (2015). Fuzzy clustering of time series data using dynamic time warping distance. Engineering Applications of Artificial Intelligence, 39, 235–244. doi:10.1016/j.engappai.2014.12.015.
Huang, X., Li, Z., Lu, J., Wang, S., Wei, H., & Chen, B. (2020). Time-series clustering for home dwell time during COVID-19: What can we learn from it? ISPRS International Journal of Geo-Information, 9(11), 675. doi:10.3390/ijgi9110675.
Alaziz, S. N., Alshowiman, A. A., Albayati, B., El-Bagoury, A. al A. H., & Shafik, W. (2023). Clustering of COVID-19 Multi-Time Series-Based K-Means and PCA With Forecasting. International Journal of Data Warehousing and Mining, 19(3), 1–25. doi:10.4018/IJDWM.317374.
Oviedo, E. H. S., Travé-Massuyès, L., Subias, A., Pavlov, M., & Alonso, C. (2023). DTW k-means clustering for fault detection in photovoltaic modules. XI International Congress of Mechanical Engineering, Mechatronics and Automation 2023, 1-3.
Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis. Pattern Recognition, 139, 109404. doi:10.1016/j.patcog.2023.109404.
Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135. doi:10.1016/j.patcog.2022.109144.
Esquivias, M. A., Jayadi, A., Shafiai, S., Abd Rashid, I. M., Borhanordin, A. H., Agusti, K. S., & Yahwidya, L. (2023). The Nexus between Food Security and Investment, Exports, Infrastructure, and Human Capital Development. Journal of Human, Earth, and Future, 4(2), 221–240. doi:10.28991/HEF-2023-04-02-07.
Stabilitas (2023). Tujuh Program Unggulan GNPIP 2023 Jadi Kunci Stabilitas Harga. Stabilitas, Jakarta, Indonesia. Available online: https://www.stabilitas.id/tujuh-program-unggulan-gnpip-2023-jadi-kunci-stabilitas-harga/ (accessed on June 2024).
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. doi:10.1016/j.patrec.2009.09.011.
Wang, G., Xing, C., Wang, J. S., Wang, H. Y., & Liu, J. X. (2022). Clustering Validity Evaluation Method Based on Two Typical Clustering Algorithms. IAENG International Journal of Computer Science, 49(3), 871.
Ashari, I. F., Dwi Nugroho, E., Baraku, R., Novri Yanda, I., & Liwardana, R. (2023). Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta. Journal of Applied Informatics and Computing, 7(1), 89–97. doi:10.30871/jaic.v7i1.4947.
Lenssen, L., & Schubert, E. (2024). Medoid Silhouette clustering with automatic cluster number selection. Information Systems, 120, 102290. doi:10.1016/j.is.2023.102290.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
