A Promising Functional Food for Diabetes Prevention, Antioxidation, and Anti-inflammation of Green Coffee Bean Extract

Acharaporn Duangjai, Anchalee Rawangkan, Achiraya Siriphap, Anong Kiddee, Noppadon Yosboonruang, Atchariya Yosboonruang


Functional foods and nutrition have become increasingly popular in preventing and reducing the incidence of diabetes. Green coffee bean extract (GCBE) has received much interest because of the evidence that coffee consumption reduces the risk of diabetes and many inflammatory diseases. This study was designed to investigate the phytochemicals contained in GCBE and their antioxidant, anti-diabetic, and anti-inflammatory efficacies. GCBE phytochemicals were analyzed using high-performance liquid chromatography (HPLC). This analysis demonstrated that chlorogenic acid was the predominant component of GCBE, followed by caffeine and caffeic acid. The antioxidant capacity of GCBE was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, demonstrating significant scavenging capacity with IC50 values of 2.96 ± 1.04 and 7.63 ± 1.03 µg/mL, respectively. The anti-hyperlipidemic efficacy of GCBE was observed through inhibiting cholesterol absorption (by increasing micelle sizes and decreasing cholesterol solubility), lipid digestion, and pancreatic lipase activity in vitro. The investigations revealed that GCBE possessed anti-hyperlipidemic properties by inhibiting cholesterol absorption, lipid digestion, and pancreatic lipase activity. Specifically, GCBE increased micelle particle sizes by ~6.5-fold, decreased cholesterol solubility by 2-fold, and reduced pancreatic lipase activity by 25%. Additionally, the in vitroanti-hyperglycemic activity of GCBE was evaluated by inhibition of α-amylase and α-glucosidase capacity. GCBE demonstrated anti-hyperglycemic activity by inhibiting α-amylase activity (32.80 ± 7.06% inhibition), while α-glucosidase activity remained unaffected. The anti-inflammatory potential of GCBE was evaluated by mRNA regulation using RT-PCR analysis. This analysis revealed that GCBE attenuated mRNA expression of COX-2, TNF-α, IL-1b, and IL-6 in LPS-induced RAW264.7 cells. GCBE’s antioxidant, anti-hyperlipidemic, and anti-hyperglycemic efficacies and its molecular mechanisms in modulating the inflammation pathway found in the present study highlight its potential as a supplement in functional foods or beverages.


Doi: 10.28991/HEF-2024-05-01-08

Full Text: PDF


Coffee; Inflammation; Hyperlipidemia; Hyperglycemia; Diabetes; Functional Food.


Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. doi:10.1016/j.diabres.2018.02.023.

Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance. Science, 259(5091), 87–91. doi:10.1126/science.7678183.

Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. doi:10.1016/j.immuni.2021.12.013.

Feng, J., Lu, S., Ou, B., Liu, Q., Dai, J., Ji, C., Zhou, H., Huang, H., & Ma, Y. (2020). The role of JNK signaling pathway in obesity-driven insulin resistance. Diabetes, Metabolic Syndrome and Obesity, 13, 1399–1406. doi:10.2147/DMSO.S236127.

Hussain, Y., Khan, H., Alotaibi, G., Khan, F., Alam, W., Aschner, M., Jeandet, P., & Saso, L. (2022). How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules, 27(13), 4058. doi:10.3390/molecules27134058.

Mei, S., & Chen, X. (2023). Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chemistry, 404, 134592. doi:10.1016/j.foodchem.2022.134592.

Hamidzadeh, K., Christensen, S. M., Dalby, E., Chandrasekaran, P., & Mosser, D. M. (2017). Macrophages and the Recovery from Acute and Chronic Inflammation. Annual Review of Physiology, 79, 567–592. doi:10.1146/annurev-physiol-022516-034348.

Ontawong, A., Duangjai, A., Vaddhanaphuti, C. S., Amornlerdpison, D., Pengnet, S., & Kamkaew, N. (2023). Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon, 9(3), 13917. doi:10.1016/j.heliyon.2023.e13917.

Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. Journal of Clinical Investigation, 116(7), 1793–1801. doi:10.1172/JCI29069.

Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., Papamikroulis, G. A., Vogiatzi, G., Papaioannou, S., Deftereos, S., & Tousoulis, D. (2019). The role of inflammation in diabetes: Current concepts and future perspectives. European Cardiology Review, 14(1), 50–59. doi:10.15420/ecr.2018.33.1.

Butt, M. S., & Sultan, M. T. (2011). Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition, 51(4), 363–373. doi:10.1080/10408390903586412.

George, S. E., Ramalakshmi, K., & Rao, L. J. M. (2008). A perception on health benefits of coffee. Critical Reviews in Food Science and Nutrition, 48(5), 464–486. doi:10.1080/10408390701522445.

Cho, H. J., Okekunle, A. P., Yie, G. E., Youn, J., Kang, M., Jin, T., Sung, J., & Lee, J. E. (2023). Association of coffee consumption with type 2 diabetes and glycemic traits: a Mendelian randomization study. Nutrition Research and Practice, 17(4), 789–802. doi:10.4162/nrp.2023.17.4.789.

Kusumah, J., & Gonzalez de Mejia, E. (2022). Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review. Food and Chemical Toxicology, 161, 112821. doi:10.1016/j.fct.2022.112821.

Asbaghi, O., Kashkooli, S., Mardani, M., Rezaei kelishadi, M., Fry, H., Kazemi, M., & Kaviani, M. (2021). Effect of green coffee bean extract supplementation on liver function and inflammatory biomarkers: A meta-analysis of randomized clinical trials. Complementary Therapies in Clinical Practice, 43, 101349. doi:10.1016/j.ctcp.2021.101349.

Lin, W. Y., Xaiver Pi-Sunyer, F., Chen, C. C., Davidson, L. E., Liu, C. S., Li, T. C., Wu, M. F., Li, C. I., Chen, W., & Lin, C. C. (2011). Coffee consumption is inversely associated with type 2 diabetes in Chinese. European Journal of Clinical Investigation, 41(6), 659–666. doi:10.1111/j.1365-2362.2010.02455.x.

Van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA, 294(1), 97–104. doi:10.1001/jama.294.1.97.

Yosboonruang, A., Ontawong, A., Thapmamang, J., & Duangjai, A. (2022). Antibacterial Activity of Coffea robusta Leaf Extract against Foodborne Pathogens. Journal of Microbiology and Biotechnology, 32(8), 1003–1010. doi:10.4014/jmb.2204.04003.

Chen, X., Mu, K., & Kitts, D. D. (2019). Characterization of phytochemical mixtures with inflammatory modulation potential from coffee leaves processed by green and black tea processing methods. Food Chemistry, 271, 248–258. doi:10.1016/j.foodchem.2018.07.097.

Erskine, E., Gültekin Subaşl, B., Vahapoglu, B., & Capanoglu, E. (2022). Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega, 7(2), 1595–1601. doi:10.1021/acsomega.1c06085.

Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56(7), 2215–2244. doi:10.1007/s00394-017-1379-1.

Hosseinabadi, S., Rafraf, M., Mahmoodzadeh, A., Asghari-Jafarabadi, M., & Asghari, S. (2020). Effects of green coffee extract supplementation on glycemic indexes, leptin, and obesity values in patients with non-alcoholic fatty liver disease. Journal of Herbal Medicine, 22, 100340. doi:10.1016/j.hermed.2020.100340.

Ding, F., Ma, B., Nazary-Vannani, A., Kord-Varkaneh, H., Fatahi, S., Papageorgiou, M., Rahmani, J., Poursoleiman, F., Júnior Borges do Nascimento, I., Li, H., Han, D., & Wang, D. (2020). The effects of green coffee bean extract supplementation on lipid profile in humans: A systematic review and meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 30(1), 1–10. doi:10.1016/j.numecd.2019.10.002.

Khalili-Moghadam, S., Hedayati, M., Golzarand, M., & Mirmiran, P. (2023). Effects of green coffee aqueous extract supplementation on glycemic indices, lipid profile, CRP, and malondialdehyde in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Frontiers in Nutrition, 10, 1241844. doi:10.3389/fnut.2023.1241844.

Yosboonruang, A., Duangjai, A., Amormlerdpison, D., & Viyoach, J. (2020). Screening for biological activities of spirogyra neglecta water extract. Walailak Journal of Science and Technology, 17(4), 359–368. doi:10.48048/wjst.2020.4638.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. doi:10.1016/S0891-5849(98)00315-3.

Kirana, C., Rogers, P. F., Bennett, L. E., Abeywardena, M. Y., & Patten, G. S. (2005). Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactives. Journal of Agricultural and Food Chemistry, 53(11), 4623–4627. doi:10.1021/jf050447x.

Duangjai, A., Limpeanchob, N., Trisat, K., & Amornlerdpison, D. (2016). Spirogyra neglecta inhibits the absorption and synthesis of cholesterol in vitro. Integrative Medicine Research, 5(4), 301–308. doi:10.1016/j.imr.2016.08.004.

Kim, J. H., Kim, H. J., Park, H. W., Youn, S. H., Choi, D. Y., & Shin, C. S. (2007). Development of inhibitors against lipase and α-glucosidase from derivatives of monascus pigment. FEMS Microbiology Letters, 276(1), 93–98. doi:10.1111/j.1574-6968.2007.00917.x.

Duangjai, A., Trisat, K., & Saokaew, S. (2021). Effect of roasting degree, extraction time, and temperature of coffee beans on anti-hyperglycaemic and anti-hyperlipidaemic activities using ultrasound-assisted extraction. Preventive Nutrition and Food Science, 26(3), 338–345. doi:10.3746/PNF.2021.26.3.338.

Li, C., & Wang, M. H. (2011). Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells. Nutrition Research and Practice, 5(2), 101–106. doi:10.4162/nrp.2011.5.2.101.

Singh, S. K., Thakur, K., Sharma, V., Saini, M., Sharma, D., Vishwas, S., Kakoty, V., Pal, R. S., Chaitanya, M. V. N. L., Babu, M. R., Gupta, S., Rehman, Z. ur, Smriti, Singla, M., Gupta, G., Jakhmola, V., Pinto, T. de J. A., Kumbhar, P., Disouza, J., … Gadewar, M. M. (2023). Exploring the multifaceted potential of chlorogenic acid: Journey from nutraceutical to nanomedicine. South African Journal of Botany, 159, 658–677. doi:10.1016/j.sajb.2023.06.038.

Woollett, L. A., Wang, Y., Buckley, D. D., Yao, L., Chin, S., Granholm, N., Jones, P. J. H., Setchell, K. D. R., Tso, P., & Heubi, J. E. (2006). Micellar solubilisation of cholesterol is essential for absorption in humans. GUT, 55(2), 197–204. doi:10.1136/gut.2005.069906.

Coreta-Gomes, F. M., Lopes, G. R., Passos, C. P., Vaz, I. M., Machado, F., Geraldes, C. F. G. C., Moreno, M. J., Nyström, L., & Coimbra, M. A. (2020). In vitro hypocholesterolemic effect of coffee compounds. Nutrients, 12(2), 437. doi:10.3390/nu12020437.

Li, X., Cai, J., Yu, J., Wang, S., Copeland, L., & Wang, S. (2021). Inhibition of in vitro enzymatic starch digestion by coffee extract. Food Chemistry, 358, 129837. doi:10.1016/j.foodchem.2021.129837.

Maedler, K., Oberholzer, J., Bucher, P., Spinas, G. A., & Donath, M. Y. (2003). Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes, 52(3), 726–733. doi:10.2337/diabetes.52.3.726.

Chen, Y., Zhao, Y., Wang, Y., Nazary-Vannani, A., Clark, C. C. T., Sedanur Macit, M., Khani, V., & Zhang, Y. (2020). The influence of green coffee bean extract supplementation on blood glucose levels: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytotherapy Research, 34(9), 2159–2169. doi:10.1002/ptr.6667.

Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J., & Paquot, N. (2014). Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice, 105(2), 141–150. doi:10.1016/j.diabres.2014.04.006.

El-Kersh, D. M., Kotob, S. E., Ammar, N. M., Mohawed, O. A. M., Ahmed, H. H., & Farag, M. A. (2023). Unravelling the anti-inflammatory and antioxidant effects of standardized green and black caffeinated coffee, tea, and their mixtures in an obese male rat model: Insights from biochemical, metabolomic, and histopathological analyses. Food and Chemical Toxicology, 179, 113971. doi:10.1016/j.fct.2023.113971.

Full Text: PDF

DOI: 10.28991/HEF-2024-05-01-08


  • There are currently no refbacks.

Copyright (c) 2024 Acharaporn Duangjai, Anchalee Rawangkan, Achiraya Siriphap, Anong Kiddee, Noppadon Yosboonruang, Atchariya Yosboonruang