Effective Economic Model for Greenhouse Facilities Management and Digitalization

Akmal Durmanov, Tulkin Farmanov, Fotima Nazarova, Bahtiyar Khasanov, Farkhod Karakulov, Nodira Saidaxmedova, Murodjon Mamatkulov, Talantbek Madumarov, Khurshida Kurbanova, Abror Mamasadikov, Zahiriddin Kholmatov

Abstract


The main objective of this study was to inform evidence-based financial strategies and policy directions for Uzbekistan’s ambitious greenhouse agriculture expansion by quantifying how integration with agricultural data platforms affects key operational metrics like crop productivity, expenditures, profitability, and technical efficiency. The core methodological approach integrated econometric modeling techniques (production, cost, and profit functions) with data envelopment analysis to conduct comprehensive techno-economic assessments across a representative sample of 58 greenhouse facilities using primary data collected on yields, costs, technology deployment levels, and digital platform accessibility. A key finding was that involvement in digital supply chain coordination platforms corresponded to a 36% increase in profitability, coupled with a 19% reduction in expenses, a 29% improvement in crop yields, and a 22% boost in optimized technical efficiency scores relative to conventional practices after controlling for technology adoption and other factors. This novel contribution provides quantifiable evidence on the synergistic productivity, financial sustainability, and climate resilience dividends unlocked by aligning physical infrastructure upgrades with virtual enhancements around data visibility and supply network integration to overcome constraints facing smallholder agricultural operations. The interdisciplinary analysis outlines an integrated roadmap for smart greenhouse expansion through investments in transparency tools, digital ecosystems, and workforce training.

 

Doi: 10.28991/HEF-2024-05-02-04

Full Text: PDF


Keywords


Greenhouse Economics; Agriculture Technology Adoption; Agricultural Policy; Digital Platform Integration; Data Envelopment Analysis.

References


Abedrabboh, O., Koç, M., & Biçer, Y. (2022). Modelling and analysis of a renewable energy-driven climate-controlled sustainable greenhouse for hot and arid climates. Energy Conversion and Management, 273, 116412. doi:10.1016/j.enconman.2022.116412.

Durmanov, A., Saidaxmedova, N., Mamatkulov, M., Rakhimova, K., Askarov, N., Khamrayeva, S., Mukhtorov, A., Khodjimukhamedova, S., Madumarov, T., & Kurbanova, K. (2023). Sustainable Growth of Greenhouses: Investigating Key Enablers and Impacts. Emerging Science Journal, 7(5), 1674–1690. doi:10.28991/ESJ-2023-07-05-014.

Kassem, Y., Gökçekuş, H., & Güvensoy, A. (2021). Techno‐economic feasibility of grid‐connected solar PV system at near east university hospital, Northern Cyprus. Energies, 14(22), 7627. doi:10.3390/en14227627.

Bjelle, E. L., Wiebe, K. S., Többen, J., Tisserant, A., Ivanova, D., Vita, G., & Wood, R. (2021). Future changes in consumption: The income effect on greenhouse gas emissions. Energy Economics, 95, 105114. doi:10.1016/j.eneco.2021.105114.

Karayel, G. K., & Dincer, I. (2024). Green hydrogen production potential of Canada with solar energy. Renewable Energy, 221, 119766. doi:10.1016/j.renene.2023.119766.

Azarov, A., Sidle, R. C., Darr, D., Verner, V., & Polesny, Z. (2024). A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan. Land, 13(2), 126. doi:10.3390/land13020126.

Dusyarov, A., Asrorov, O., & Khaydarov, A. (2023). Determination of the heat losses of insolation passive solar heating systems. BIO Web of Conferences, 71, 2038. doi:10.1051/bioconf/20237102038.

Meyer, P. A., Snowden-Swan, L. J., Jones, S. B., Rappé, K. G., & Hartley, D. S. (2020). The effect of feedstock composition on fast pyrolysis and upgrading to transportation fuels: Techno-economic analysis and greenhouse gas life cycle analysis. Fuel, 259, 116218. doi:10.1016/j.fuel.2019.116218.

Choi, W., & Kang, S. (2022). Greenhouse Gas Reduction and Economic Cost of Green Hydrogen-Using Technologies in the Steel Industry. SSRN Electronic Journal, 335, 117569. doi:10.2139/ssrn.4286238.

Baumüller, H., Ikpi, U., Jumpah, E. T., Kamau, G., Kergna, A. O., Mose, L., Nientao, A., Omari, R., Phillip, D., & Salasya, B. (2023). Building digital bridges in African value chains: Exploring linkages between ICT use and social capital in agricultural marketing. Journal of Rural Studies, 100, 103002. doi:10.1016/j.jrurstud.2023.03.010.

Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. Applied Sciences (Switzerland), 12(3), 1047. doi:10.3390/app12031047.

Banaeian, N., Omid, M., & Ahmadi, H. (2011). Application of data envelopment analysis to evaluate efficiency of commercial greenhouse strawberry. Research Journal of Applied Sciences, Engineering and Technology, 3(3), 185–193.

Liang, Y., Jing, X., Wang, Y., Shi, Y., & Ruan, J. (2019). Evaluating production process efficiency of provincial greenhouse vegetables in China using data envelopment analysis: A green and sustainable perspective. Processes, 7(11), 780. doi:10.3390/pr7110780.

Kacira, M., Sase, S., & Okushima, L. (2004). Effects of side vents and span numbers on wind-induced natural ventilation of a gothic multi-span greenhouse. Japan Agricultural Research Quarterly, 38(4), 227–233. doi:10.6090/jarq.38.227.

Zhang, F., Zhang, Y., Lu, W., Gao, Y., Gong, Y., & Cao, J. (2022). 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics (Switzerland), 11(18), 2845. doi:10.3390/electronics11182845.

Wang, J., Liu, L., Zhao, K., & Wen, Q. (2023). Farmers’ adoption intentions of water-saving agriculture under the risks of frequent irrigation-induced landslides. Climate Risk Management, 39, 100484. doi:10.1016/j.crm.2023.100484.

Teitel, M., Grimberg, R., Ozer, S., Vitoshkin, H., Yehia, I., Magadley, E., Levi, A., Ziffer, E., Gantz, S., & Levy, A. (2023). Effects of organic photovoltaic modules installed inside greenhouses on microclimate and plants. Biosystems Engineering, 232, 81–96. doi:10.1016/j.biosystemseng.2023.06.012.

Taoumi, H., Elouahbi, K., Adnane, I., & Lahrech, K. (2024). Sustainable crop production: Highlights on economic, environmental and social life cycle thinking. Science of the Total Environment, 916, 170267. doi:10.1016/j.scitotenv.2024.170267.

Zhang, M., Wang, L., Wang, Q., Chen, D., & Liang, X. (2024). The environmental and socioeconomic benefits of optimized fertilization for greenhouse vegetables. Science of the Total Environment, 908, 168252. doi:10.1016/j.scitotenv.2023.168252.

Ashurov, Z., & Khakmirzaev, N. (2023). Digital transformation of agricultural sector in Uzbekistan: current state, advantages and strategies. E3S Web of Conferences, 460, 2003. doi:10.1051/e3sconf/202346002003.

Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S. N., Sayed, S. R. M., & Gan, J. (2023). Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. Journal of Environmental Management, 347, 119147. doi:10.1016/j.jenvman.2023.119147.

Bin Abu Sofian, A. D. A., Sun, X., Gupta, V. K., Berenjian, A., Xia, A., Ma, Z., & Show, P. L. (2023). Advances, Synergy, and Perspectives of Machine Learning and Biobased Polymers for Energy, Fuels, and Biochemicals for a Sustainable Future. Energy and Fuels, 38(3), 1593–1617. doi:10.1021/acs.energyfuels.3c03842.

Washaya, S., & Washaya, D. D. (2023). Benefits, concerns and prospects of using goat manure in sub-Saharan Africa. Pastoralism, 13(1), 28. doi:10.1186/s13570-023-00288-2.

Guo, B., Wang, Y., Zhang, H., Liang, C., Feng, Y., & Hu, F. (2023). Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Economic Modelling, 120, 106194. doi:10.1016/j.econmod.2023.106194.

Sarikyan, K. M., Sargsyan, G. G., Tsereteli, I. S., Grigoryan, M. G., & Hakobyan, E. A. (2021). Study of New Technologies for Cultivation of Solanaceous Vegetable Crops in Short Vegetation Period Regions of Armenia. IOP Conference Series: Earth and Environmental Science, 852(1), 12089. doi:10.1088/1755-1315/852/1/012089.

Wang, X. Q., Zeng, Z. L., Shi, Z. M., Wang, J. H., & Huang, W. (2023). Variation in Photosynthetic Efficiency under Fluctuating Light between Rose Cultivars and its Potential for Improving Dynamic Photosynthesis. Plants, 12(5), 1186. doi:10.3390/plants12051186.

Bernard, B. M., Song, Y., Narcisse, M., Hena, S., & Wang, X. (2023). A nonparametric analysis of climate change nexus on agricultural productivity in Africa: Implications on food security. Renewable Agriculture and Food Systems, 38, 9. doi:10.1017/S1742170522000424.

LEMECHSHENKO, O., NAKIPOVA, G., & AKHMET, G. (2022). Improving the Program-Targeted Management Methodology and Its Practical Application for the Sustained and Environment Development of Agro-Industrial Complex. Journal of Environmental Management and Tourism, 13(3), 769. doi:10.14505/jemt.v13.3(59).16.

Piancharoenwong, A., & Badir, Y. F. (2024). IoT smart farming adoption intention under climate change: The gain and loss perspective. Technological Forecasting and Social Change, 200, 123192. doi:10.1016/j.techfore.2023.123192.

Tian, M., Liu, R., Wang, J., Liang, J., Nian, Y., & Ma, H. (2023). Impact of Environmental Values and Information Awareness on the Adoption of Soil Testing and Formula Fertilization Technology by Farmers—A Case Study Considering Social Networks. Agriculture (Switzerland), 13(10). doi:10.3390/agriculture13102008.

Kitole, F. A., Mkuna, E., & Sesabo, J. K. (2024). Digitalization and agricultural transformation in developing countries: Empirical evidence from Tanzania agriculture sector. Smart Agricultural Technology, 7, 100379. doi:10.1016/j.atech.2023.100379.

Agrawal, R., Wankhede, V. A., Kumar, A., & Luthra, S. (2023). A systematic and network-based analysis of data-driven quality management in supply chains and proposed future research directions. TQM Journal, 35(1), 73–101. doi:10.1108/TQM-12-2020-0285.

Carotti, L., Pistillo, A., Zauli, I., Meneghello, D., Martin, M., Pennisi, G., Gianquinto, G., & Orsini, F. (2023). Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation. Agricultural Water Management, 285, 108365. doi:10.1016/j.agwat.2023.108365.

Thakur, N., Nigam, M., Mann, N. A., Gupta, S., Hussain, C. M., Shukla, S. K., Shah, A. A., Casini, R., Elansary, H. O., & Khan, S. A. (2023). Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Functional and Integrative Genomics, 23(1), 57. doi:10.1007/s10142-023-00982-9.

Liang, C., & Shah, T. IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming. Eigenpub Review of Science and Technology, 7(1), 85–104.

Urak, F., & Bilgic, A. (2023). Food insecurity and sovereignty threat to uncontrolled price spillover effects in financialized agricultural products: The red meat case in Turkiye. Borsa Istanbul Review, 23(3), 580–599. doi:10.1016/j.bir.2022.12.006.

Shipilova, K., Radkevich, M., Tsoy, V., Shoergashova, S., Vildanova, L., & Gapirov, A. (2020). Land use by transport infrastructure in Tashkent City. IOP Conference Series: Materials Science and Engineering, 883(1), 12067. doi:10.1088/1757-899X/883/1/012067.

Guan, Y., Yan, J., Shan, Y., Zhou, Y., Hang, Y., Li, R., Liu, Y., Liu, B., Nie, Q., Bruckner, B., Feng, K., & Hubacek, K. (2023). Burden of the global energy price crisis on households. Nature Energy, 8(3), 304–316. doi:10.1038/s41560-023-01209-8.

Dawkins, E., Strambo, C., Xylia, M., Grah, R., Gong, J., Axelsson, K., & Maltais, A. (2023). Who is most at risk of losing out from low-carbon transition in the food and transport sectors in Sweden? Equity considerations from a consumption perspective. Energy Research and Social Science, 95, 102881. doi:10.1016/j.erss.2022.102881.

Setiawati, I., Majid, A. K., Pangestu, A. S., & Lestari, G. (2023). Export Opportunities Through Analysis of Trends and Consumer Interest of Araceae Ornamental Plants. AIP Conference Proceedings, 2586, 050009. doi:10.1063/5.0106639.

Veysset, P., Kouakou, E., & Minviel, J. J. (2023). Productivity gains, evolution of productive performances, and profitability of organic ruminant farms: farm size and feed self-sufficiency matter. Organic Agriculture, 13(2), 205–220. doi:10.1007/s13165-023-00422-9.

Vasiljeva, M. V. (2013). State and municipal finance control as a management function the regional economy: the mechanism and direction of the impacts in relation to regions of various types. Contemporary Economic Issues 2, 49. doi:10.24194/21321.

Pan, Y., Zhang, S., & Zhang, M. (2024). The impact of entrepreneurship of farmers on agriculture and rural economic growth: Innovation-driven perspective. Innovation and Green Development, 3(1), 100093. doi:10.1016/j.igd.2023.100093.

Choudhary, A. K., Yadav, D. S., Sood, P., Rahi, S., Arya, K., Thakur, S. K., Lal, R., Kumar, S., Sharma, J., Dass, A., Babu, S., Bana, R. S., Rana, D. S., Kumar, A., Rajpoot, S. K., Gupta, G., Kumar, A., Harish, M. N., Noorzai, A. U., … Singh, R. (2021). Post-emergence herbicides for effective weed management, enhanced wheat productivity, profitability and quality in north-western Himalayas: A ‘participatory-mode’ technology development and dissemination. Sustainability (Switzerland), 13(10), 5425. doi:10.3390/su13105425.

Maaoui, M., Boukchina, R., & Hajjaji, N. (2021). Environmental life cycle assessment of Mediterranean tomato: case study of a Tunisian soilless geothermal multi-tunnel greenhouse. Environment, Development and Sustainability, 23(2), 1242–1263. doi:10.1007/s10668-020-00618-z.

Kiran Kumara, T. M., Kandpal, A., & Pal, S. (2020). A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia. Journal of Environmental Management, 269, 110773. doi:10.1016/j.jenvman.2020.110773.

Yılmaz, S. E., Yildizhan, H., Yıldırım, C., Zhao, C.-Y., Gomes, J., & Alkharusi, T. (2023). The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis. Sustainability, 15(20), 14989. doi:10.3390/su152014989.

Appolloni, E., Paucek, I., Pennisi, G., Manfrini, L., Gabarrell, X., Gianquinto, G., & Orsini, F. (2023). Winter Greenhouse Tomato Cultivation: Matching Leaf Pruning and Supplementary Lighting for Improved Yield and Precocity. Agronomy, 13(3), 671. doi:10.3390/agronomy13030671.

Wang, H., Wang, X., Sarkar, A., & Qian, L. (2021). Evaluating the impacts of smallholder farmer’s participation in modern agricultural value chain tactics for facilitating poverty alleviation—a case study of kiwifruit industry in Shaanxi, China. Agriculture (Switzerland), 11(5), 462. doi:10.3390/agriculture11050462.

Shaktawat, P., & Swaymprava, S. (2024). Digital Agriculture: Exploring the Role of Information and Communication Technology for Sustainable Development. Ed. Biswajit Mallick and Jyotishree Anshuman published by PMW, New Delhi, 31.

Lu, Q., Liao, C., Chen, M., Shi, V., Hu, X., & Hu, W. (2024). Platform financing or bank financing in agricultural supply chains: The impact of platform digital empowerment. European Journal of Operational Research, 315(3), 952–964. doi:10.1016/j.ejor.2023.12.024.

Rodrigues, L. C. C., Fortini, R. M., & C. R. Neves, M. (2023). Impacts of the use of biological pest control on the technical efficiency of the Brazilian agricultural sector. International Journal of Environmental Science and Technology, 20(1), 1–16. doi:10.1007/s13762-022-04032-y.

Cobb, C.W. & Douglas, P.H. (1928). A Theory of Production. The American Economic Review, 18(1), 139-165.

Fezzi, C., & Bateman, I. (2013). The impact of climate change on agriculture: nonlinear effects and aggregation bias in Ricardian models of farmland values. Journal of the Association of Environmental and Resource Economists, 2(1), 57-92. doi:10.2139/ssrn.2358004.

Varian, H. R., & Varian, H. R. (1992). Microeconomic analysis. Norton, New York, USA.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429-444.

Chandio, A. A., Bashir, U., Akram, W., Usman, M., Ahmad, M., & Jiang, Y. (2023). What role do international remittance inflows play in boosting agricultural productivity? Empirical analysis of emerging Asian economies. International Journal of Emerging Markets. doi:10.1108/IJOEM-06-2022-1019.

Chen, X., Gao, J., Chen, L., Khanna, M., Gong, B., & Auffhammer, M. (2024). The spatiotemporal pattern of surface ozone and its impact on agricultural productivity in China. PNAS Nexus, 3(1), 435. doi:10.1093/pnasnexus/pgad435.

Alshami, A. K., El-Shafei, A., Al-Omran, A. M., Alghamdi, A. G., Louki, I., & Alkhasha, A. (2023). Responses of Tomato Crop and Water Productivity to Deficit Irrigation Strategies and Salinity Stress in Greenhouse. Agronomy, 13(12), 3016. doi:10.3390/agronomy13123016.

Bremmer, J., Meisner, A., Bregman, C., Splinter, G., Horsting, A., & van der Salm, C. (2023). Future pathways towards sustainable crop protection in greenhouse horticulture; Anticipating consequences of the Farm to Fork Strategy (pp. 0–80).

Durmanov, A., Tabayev, A., Turmanov, T., Aliyeva, G., Kasimov, S., & Ruzieva, D. (2023). Methodology for calculating maximum income in the greenhouse economy. AIP Conference Proceedings, 2921, 0165018. doi:10.1063/5.0165018.

Xie, Y., Chen, Z., Khan, A., & Ke, S. (2024). Organizational support, market access, and farmers’ adoption of agricultural green production technology: evidence from the main kiwifruit production areas in Shaanxi Province. Environmental Science and Pollution Research, 31(8), 12144–12160. doi:10.1007/s11356-024-31981-3.

Shelar, A., Nile, S. H., Singh, A. V., Rothenstein, D., Bill, J., Xiao, J., Chaskar, M., Kai, G., & Patil, R. (2023). Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. Nano-Micro Letters, 15(1), 54. doi:10.1007/s40820-023-01025-5.

Du, Y., Xu, H., & Chen, Y. (2024). Digital empowerment and innovation in risk control strategies for fishery supply chain finance—a case study of Puhui agriculture and animal husbandry financing guarantee company limited. Marine Development, 2(1), 1–20. doi:10.1007/s44312-023-00013-y.

Kodirov, D., Muratov, K., Tursunov, O., Ugwu, E. I., & Durmanov, A. (2020). The use of renewable energy sources in integrated energy supply systems for agriculture. IOP Conference Series: Earth and Environmental Science, 614(1), 12007. doi:10.1088/1755-1315/614/1/012007.

Ulussever, T., Ertuğrul, H. M., Kılıç Depren, S., Kartal, M. T., & Depren, Ö. (2023). Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models. Foods, 12(4), 873. doi:10.3390/foods12040873.

Lehtonen, H., & Rämö, J. (2023). Development towards low carbon and sustainable agriculture in Finland is possible with moderate changes in land use and diets. Sustainability Science, 18(1), 425–439. doi:10.1007/s11625-022-01244-6.

Wani, M. A., Din, A., Nazki, I. T., Rehman, T. U., Al-Khayri, J. M., Jain, S. M., Lone, R. A., Bhat, Z. A., & Mushtaq, M. (2023). Navigating the future: exploring technological advancements and emerging trends in the sustainable ornamental industry. Frontiers in Environmental Science, 11, 1188643. doi:10.3389/fenvs.2023.1188643.

Azadi, H., Ghazali, S., Ghorbani, M., Tan, R., & Witlox, F. (2023). Contribution of small-scale farmers to global food security: a meta-analysis. Journal of the Science of Food and Agriculture, 103(6), 2715–2726. doi:10.1002/jsfa.12207.

Belhadi, A., Kamble, S., Subramanian, N., Singh, R. K., & Venkatesh, M. (2024). Digital capabilities to manage agri-food supply chain uncertainties and build supply chain resilience during compounding geopolitical disruptions. International Journal of Operations and Production Management. doi:10.1108/IJOPM-11-2022-0737.

Khan, D., Nouman, M., & Ullah, A. (2023). Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia. Environment, Development and Sustainability, 25(4), 3723–3745. doi:10.1007/s10668-022-02194-w.

Qin, T., Wang, L., Zhou, Y., Guo, L., Jiang, G., & Zhang, L. (2022). Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture (Switzerland), 12(2), 297. doi:10.3390/agriculture12020297.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-02-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Akmal Durmanov, Tulkin Farmanov, Fotima Nazarova, Bahtiyar Khasanov, Farkhod Karakulov, Nodira Saidaxmedova, Murodjon Mamatkulov, Talantbek Madumarov, Khurshida Kurbanova, Abror Mamasadikov, Zahiriddin Kholmatov