Designing a Multistage Flood Control Channel for Sediment and Flow Management in Coastal Areas
Downloads
Flow and sediment are the two main parameters that significantly influence the flood. Flooding results in riverbed degradation, adversely affecting the construction of the river and the environment. Therefore, it is essential to engineer the profile of the flood control channel in the selected area of Likupang Pulisan Beach. This research seeks to develop a design that mitigates the adverse effects caused by flooding and sediment movement, resulting in geological and ecological disasters. The amount of rainfall and watershed characteristics become input data in the HEC-HMS application to obtain the amount of planned flood discharge. Measurement and mapping of river geometry were conducted. This data is used in the HEC-RAS application, which will simulate flow conditions in the field in real time. From the analysis of the flood control channel profile engineering, the dimensions of a multi-stage trapezium channel with top width (La) = 10 m, bottom width (Lb) = 1 m, and height (h) = 3 m were obtained, which can drain a flood discharge of 36.5 m³/s. The novelty of this research is the design of a multilevel channel profile that is implemented in a tourist area with the aim of flood control.
Downloads
[1] Wahab, N. A., Kamarudin, M. K. A., Toriman, M. E., Juahir, H., Ata, F. M., Ghazali, A., Samah, M. A. A., Azinuddin, M., Khairuldin, W. M. K. F. W., & Hoe, L. I. (2022). The assessment of sedimentation and water quality status for river catchment management in Kenyir Lake Basin. Desalination and Water Treatment, 269, 93–105. doi:10.5004/dwt.2022.28674.
[2] Mase, L. Z. (2020). Slope Stability and Erosion-Sedimentation Analyses along Sub-watershed of Muara Bangkahulu River in Bengkulu City, Indonesia. E3S Web of Conferences, 148. doi:10.1051/e3sconf/202014803002.
[3] Listia, V., Munirwansyah, M., Azmeri, A., & Yulianur, A. (2023). An Investigation of Hydro-morphology Contributory Factors in Flooding and Sedimentation Problems on the Krueng Buloh River, Indonesia. The Open Civil Engineering Journal, 17(1), 1–13. doi:10.2174/18741495-v17-2306070-2022-83.
[4] Hu, J., Zhao, G., Mu, X., Hörmann, G., Tian, P., Gao, P., & Sun, W. (2020). Effect of soil and water conservation measures on regime-based suspended sediment load during floods. Sustainable Cities and Society, 55, 102044. doi:10.1016/j.scs.2020.102044.
[5] Gibson, S., & Shelley, J. (2020). Flood disturbance, recovery, and inter-flood incision on a large sand-bed river. Geomorphology, 351, 106973. doi:10.1016/j.geomorph.2019.106973.
[6] Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R., & Ferreira, M. T. (2020). Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena, 188, 104466. doi:10.1016/j.catena.2020.104466.
[7] Mananoma, T. (2009). The effect of sediment supply to the damage of infrastructures. International Conference on Sustainable Development for Water and Waste Water Treatment, Yogyakarta, Indonesia.
[8] Tiny, M., Swingly Frans, S. J., & Rolans Izack, L. R. (2021). Study of Sediment Material Utilization for Morphology Stability of Bobuatan River. International Journal of Civil Engineering, 8(10), 14–22. doi:10.14445/23488352/ijce-v8i10p103.
[9] Makal, A. P., Mananoma, T., & Sumarauw, J. S. (2020). Analysis of Flood Discharge and Water Level of Kawangkoan River in Kawangkoan Village, Kalawat Sub-district, North Minahasa Regency. Jurnal Sipil Statik, 8(3), 283-292.
[10] Firmansyah, A. (2021). Descriptive Analysis of Tourism Potential in Villages Surrounding the Likupang Special Economic Zone (KEK). Jurnal Pariwisata Terapan, 5(2), 160-173. doi:10.22146/jpt.55822.
[11] Abbass, Z. D., Maatooq, J. S., & Al-Mukhtar, M. M. (2024). Investigating the Hydraulic Behaviours of an Alluvial Meandering River Reach between Two Barrages. Civil Engineering Journal, 10(05), 1561-1576. doi:10.28991/CEJ-2024-010-05-013.
[12] Auwyanto, K. H., Mananoma, T., & Sumarauw, J. S. (2024). Study of the Effectiveness of Gully Plugs in Controlling Runoff in the Upstream Area of the Pulisan Watershed. EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, 11(1), 143-158.
[13] Fitriadin, A. A., Ikhsan, J. U., & Harsanto, P. (2017). Morphology analysis in middle-downstream area of Progo River due to the debris flow. AIP Conference Proceedings, 1855(1), 040016. doi:10.1063/1.4985512.
[14] Mananoma, T., Sudjarwadi, & Legono, D. (2005). Prediction of Sediment Transport in Rivers for Water Damage Control. Pertemuan Ilmiah Tahunan HATHI XXII, Yogyakarta, Indonesia. Available online: http://repo.unsrat.ac.id/28/1/Prediksi_Transport_Sedimen_(HATHI%2CYogya_2005)_.pdf (accessed on August 2025).
[15] Mananoma, T., Legono, D., & Rahardjo, A. (2006). Torrential River Management to Control Watershed Damage. UNSRAT Repository, 1-8. Available online: http://repo.unsrat.ac.id/id/eprint/17 (accessed on August 2025).
[16] Yang, C. T. (1996). Sediment Transport: Theory and Practice. McGraw-Hill Book Company, Ohio, United States.
[17] El-Baradei, S. A., El-Abd, M., & Hazem, N. (2024). Estimate of Power Output from Hydraulic Jumps Generated Downstream from Barrages. Journal of Human, Earth, and Future, 5(1), 72–84. doi:10.28991/HEF-2024-05-01-06.
[18] Isa, M., Sumarauw, J. S., & Hendratta, L. A. (2020). Analysis of Flood Discharge and Water Level of the Marisa River, West Limboto District, Gorontalo Regency. Jurnal Sipil Statik, 8(4), 591-600.
[19] Sondak, S. W., Tangkudung, H., & Hendratta, L. A. (2019). Analysis of flood discharge and water level of the Girian River in Bitung City. Jurnal sipil statik, 7(12), 1681-1688.
[20] Triatmodjo, B. (2008). Applied Hydrology Yogyakarta. Beta Offset, Java, Indonesia.
[21] Soulis, K. X., & Valiantzas, J. D. (2012). SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrology and Earth System Sciences, 16(3), 1001–1015. doi:10.5194/hess-16-1001-2012.
[22] Wijaya, T., & Wijayanti, Y. (2024). Flood Mapping Using HEC-RAS and HEC-HMS: A Case Study of Upper Citarum River at Dayeuhkolot District, Bandung Regency, West Java. IOP Conference Series: Earth and Environmental Science, 1324(1), 012103. doi:10.1088/1755-1315/1324/1/012103.
[23] Ikhwali, M. F., Pawattana, C., Nur, S., Azhari, B., Ikhsan, M., Aida, N., & Silvia, C. S. (2022). Reviews, challenges, and prospects of the application of Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) model in Indonesia. Engineering and Applied Science Research, 49(5), 669–680. doi:10.14456/easr.2022.65.
[24] Hussain, F., Wu, R. S., & Yu, K. C. (2021). Application of physically based semi-distributed HEC-HMS model for flow simulation in tributary catchments of Kaohsiung area Taiwan. Journal of Marine Science and Technology (Taiwan), 29(1), 42–62. doi:10.51400/2709-6998.1003.
[25] Fajar, M. M., Sumarauw, J. S. F., & Mananoma, T. Potential Analysis and Flood Control in Pulisan River with the Eco-Hydraulic Concept. Tekno, 20(80), 107–118. doi:10.35793/jts.v20i80.43026.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
