Antioxidation, Antimicrobial, and Cytotoxic Activities of Some Mangrove Plants
Downloads
Twenty-three samples of mangrove plants were refluxed with methanol, then their activities were evaluated. Surprisingly, sample 6 (%SC50 = 5.00 ± 0.08 μg/mL) had the best antioxidation activity among candidates and L-ascorbic acid. Sample 19 was the second, with %SC50 = 5.15 ± 0.15 μg/mL. Both presented the availability of flavonoids and tannins, which was confirmed by phytochemical screening. The antimicrobial assay was done parallelly with the DPPH-free radical scavenging assay. Sample 19 exhibited the highest bacteriostatic activities against S. aureus, A. baumannii, P. aeruginosa (MIC = 62.50 μg/mL), and E. faecalis (MIC = 500 μg/mL) due to the presence of terpenes. In the MTT assay, it was found that sample 19 displayed specific toxicity against KB (%IC50 = 18.51 ± 5.49 μg/mL) and HeLa (%IC50 = 160.68 ± 39.36 μg/mL). Samples 2, 4, and 20 also demonstrated selective toxicity against cancer cells. This is the first report of sample 19, which is the most effective and potent cytotoxic agent against KB, and sample 4, which is the specific and most potent cytotoxic agent against HeLa. This is the first time mangrove plants have been evaluated for their potential to be alternative natural sources of medicine.
Downloads
[1] Nakhon Si Thammarat Provincial Office. (2020). Physical Characteristics. Nakhon Si Thammarat, Thailand. Available online: http://www.nakhonsithammarat.go.th/geography.php. (accessed on August 2025).
[2] Elwin, A., Robinson, E. J. Z., Feola, G., Jintana, V., & Clark, J. (2024). How is mangrove ecosystem health defined? A local community perspective from coastal Thailand. Ocean and Coastal Management, 251, 107037. doi:10.1016/j.ocecoaman.2024.107037.
[3] Akram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests, 14(9), 1698. doi:10.3390/f14091698.
[4] Ariwaodo, J., & Odega, C. A. (2024). Morphology and Phytochemical Profile of Rhizophora Racemosa G. Meyer Tree Species from the Niger Delta Mangrove. Article in Journal of Forestry Research, 119–131.
[5] Duryat, Yuwono, S. B., Riniarti, M., Hidayat, K. F., Hidayat, W., Rodiani, Damai, A. A., Prasetyo, P., & Dani, H. A. (2024). Species Diversity and Herbal Medicine Utilization of Mangrove Plants: A Comparative Study among Coastal Communities in Lampung. Jurnal Sylva Lestari, 12(3), 781–800. doi:10.23960/jsl.v12i3.936.
[6] Mujeeb, F., Bajpai, P., & Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of aegle marmelos. BioMed Research International, 2014, 497606. doi:10.1155/2014/497606.
[7] Raal, A., Meos, A., Hinrikus, T., Heinämäki, J., Romāne, E., Gudienė, V., Jakštas, V., Koshovyi, O., Kovaleva, A., Fursenco, C., Chiru, T., & Nguyen, H. T. (2020). Dragendorff’s reagent: Historical perspectives and current status of a versatile reagent introduced over 150 years ago at the University of Dorpat, Tartu, Estonia. Pharmazie, 75(7), 299–306. doi:10.1691/ph.2020.0438.
[8] Hossain, M. A., AL-Raqmi, K. A. S., AL-Mijizy, Z. H., Weli, A. M., & Al-Riyami, Q. (2013). Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pacific Journal of Tropical Biomedicine, 3(9), 705–710. doi:10.1016/S2221-1691(13)60142-2.
[9] Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., & Morelli, I. (2001). Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products, 64(7), 892–895. doi:10.1021/np0100845.
[10] Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews, 26(4), 822–880. doi:10.1128/CMR.00022-13.
[11] Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler Jr, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews, 28(3), 603-661. doi:10.1128/cmr.00134-14.
[12] Duraisingham, S., Hanson, S., Buckland, M., Grigoriadou, S., & Longhurst, H. (2014). Pseudomonas infection in antibody deficient patients. European Journal of Microbiology and Immunology, 4(4), 198–203. doi:10.1556/eujmi-d-14-00026.
[13] Anderson, A. C., Jonas, D., Huber, I., Karygianni, L., Wölber, J., Hellwig, E., Arweiler, N., Vach, K., Wittmer, A., & Al-Ahmad, A. (2016). Enterococcus faecalis from food, clinical specimens, and oral sites: Prevalence of virulence factors in association with biofilm formation. Frontiers in Microbiology, 6(JAN), 1534. doi:10.3389/fmicb.2015.01534.
[14] Howard, A., O’Donoghue, M., Feeney, A., & Sleator, R. D. (2012). Acinetobacter baumannii an emerging opportunistic pathogen. Virulence, 3(3), 5. doi:10.4161/viru.19700.
[15] Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiology and Molecular Biology Reviews, 80(3), 629–661. doi:10.1128/mmbr.00078-15.
[16] Martins, N., Barros, L., Henriques, M., Silva, S., & Ferreira, I. C. (2015). In vivo anti‐Candida activity of phenolic extracts and compounds: future perspectives focusing on effective clinical interventions. BioMed research international, 2015(1), 247382. doi:10.1155/2015/247382.
[17] Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. doi:10.1016/j.jpha.2015.11.005.
[18] Weecharangsan, W., Sithithaworn, W., & Siripong, P. (2014). Cytotoxic activity of essential oils of Mentha Sps. On human carcinoma cells. Journal of Health Research, 28(1), 9-12.
[19] Gavanji, S., Bakhtari, A., Famurewa, A. C., & Othman, E. M. (2023). Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chemistry and Biodiversity, 20(2), 202201098. doi:10.1002/cbdv.202201098.
[20] Yahuafa, J., Onsrisawat, P., Nontakham, J., Piyaviriyakul, S., Wungsintaweekul, B., & Limpanasithikul, W. Free radical scavenging and immunomodulatory activities of the aqueous extract of Annona muricata Linn. Journal of Basic and Applied Pharmacology, 4(1), 39– 48.
[21] Chothiphirat, A., Nittayaboon, K., Kanokwiroon, K., Srisawat, T., & Navakanitworakul, R. (2019). Anticancer Potential of Fruit Extracts from Vatica diospyroides Symington Type SS and Their Effect on Program Cell Death of Cervical Cancer Cell Lines. Scientific World Journal, 2019, 5491904. doi:10.1155/2019/5491904.
[22] Zulfikar, T., Siregar, T. N., Rozaliyani, A., & Sutriana, A. (2024). Antimicrobial Potential of Calotropis gigantea Leaf against Klebsiella pneumoniae in Ventilator-Associated Pneumonia. Journal of Human, Earth, and Future, 5(3), 456–470. doi:10.28991/HEF-2024-05-03-010.
[23] Yahuafai, J., Onsrisawat, P., Piyaviriyakul, S., Nontakham, J., & Suthamnatpong, N. (2023). Anticancer effect of Triphala extract on the hepatocellular carcinoma cells in mice. Journal of Pharmacy and Pharmacognosy Research, 11(3), 448–454. doi:10.56499/jppres23.1602_11.3.448.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
