Novel Pyramidal Bidirectional Gated Vision Transformer for Rice Leaf Disease Detection
Downloads
Worldwide, rice is a vital crop, but it is often affected by disease during the growth process. Rice leaf diseases include flax leaf spot, rice blast, and bacterial blight. These illnesses were very infectious and lethal, and they might pose a significant barrier to agricultural progress. The rice leaf image contains noise and unclear edges, which can affect the accurate extraction of disease. However, because rice leaf diseases might be identical to one another, classifying photos of diseases can be a very challenging task. The categorization of rice leaf diseases using a hybrid deep learning (DL) approach with an efficient feature extraction technique is innovative in this research. The three stages of this paper are feature extraction, classification, and pre-processing. First, the image from the dataset is extracted, and the adaptive Gaussian bilateral filter (AdGaBF) is used to remove noise. The features are then extracted, and the disease is classified using the deep multi-scale feature enhanced pyramidal convolutional block assisted bidirectional gated transformer (Dep-MPc-BgT) technique. The experiment uses two datasets, the rice leaf disease image dataset and the rice leaf disease dataset, and the approach successfully diagnoses the disease. Both datasets effectively evaluate the performance by using various metrics such as accuracy, precision, recall, F1-score and kappa score, MSE, RMSE, and processing time. The proposed rice leaf image dataset obtained values of 99.23%, 99.02%, 98.89%, 98.67%, 98.57%, 0.964, 0.991, and 0.118 s correspondingly. Similarly, the rice leaf dataset also achieved better performance of accuracy, precision, recall, F1-score, Kappa score, MSE, RMSE, and processing time values of 99.56%, 98.23%, 99.34%, 99.16%, 98.67%, 0.972, 0.994, and 0.127 s, respectively.
Downloads
[1] Zhou, C., Zhong, Y., Zhou, S., Song, J., & Xiang, W. (2023). Rice leaf disease identification by residual-distilled transformer. Engineering Applications of Artificial Intelligence, 121, 106020. doi:10.1016/j.engappai.2023.106020.
[2] Priyanka Kulkarni, & Dr. Swaroopa Shastri. (2024). Rice Leaf Diseases Detection Using Machine Learning. Journal of Scientific Research and Technology, 17–22. doi:10.61808/jsrt81.
[3] Ritharson, P. I., Raimond, K., Mary, X. A., Robert, J. E., & J, A. (2024). DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes. Artificial Intelligence in Agriculture, 11, 34–49. doi:10.1016/j.aiia.2023.11.001.
[4] Bari, B. S., Islam, M. N., Rashid, M., Hasan, M. J., Razman, M. A. M., Musa, R. M., Nasir, A. F. A., & Majeed, A. P. P. A. (2021). A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Computer Science, 7, 432. doi:10.7717/PEERJ-CS.432.
[5] Kaur, A., Guleria, K., & Trivedi, N. K. (2024). A deep learning-based model for biotic rice leaf disease detection. Multimedia Tools and Applications, 83(36), 83583–83609. doi:10.1007/s11042-024-18730-x.
[6] Firnando, F. M., Setiadi, D. R. I. M., Muslikh, A. R., & Iriananda, S. W. (2024). Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification. Journal of Future Artificial Intelligence and Technologies, 1(1), 1–11. doi:10.62411/faith.2024-4.
[7] Pothen, M. E., & Pai, D. M. L. (2020). Detection of Rice Leaf Diseases Using Image Processing. Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, 424–430. doi:10.1109/ICCMC48092.2020.ICCMC-00080.
[8] Islam, A., Islam, R., Haque, S. M. R., Islam, S. M. M., & Khan, M. A. I. (2021). Rice Leaf Disease Recognition using Local Threshold Based Segmentation and Deep CNN. International Journal of Intelligent Systems and Applications, 13(5), 35–45. doi:10.5815/ijisa.2021.05.04.
[9] Sharma, R., Kukreja, V., Kaushal, R. K., Bansal, A., & Kaur, A. (2022). Rice Leaf blight Disease detection using multi-classification deep learning model. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2022, 1–5. doi:10.1109/ICRITO56286.2022.9964644.
[10] Deng, R., Tao, M., Xing, H., Yang, X., Liu, C., Liao, K., & Qi, L. (2021). Automatic Diagnosis of Rice Diseases Using Deep Learning. Frontiers in Plant Science, 12, 701038. doi:10.3389/fpls.2021.701038.
[11] Shahidur Harun Rumy, S. M., Arefin Hossain, M. I., Jahan, F., & Tanvin, T. (2021). An IoT based system with edge intelligence for rice leaf disease detection using machine learning. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 - Proceedings, 1–6. doi:10.1109/IEMTRONICS52119.2021.9422499.
[12] Hossain, S. M. M., Tanjil, M. M. M., Ali, M. A. Bin, Islam, M. Z., Islam, M. S., Mobassirin, S., Sarker, I. H., & Islam, S. M. R. (2020). Rice Leaf Diseases Recognition Using Convolutional Neural Networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12447 LNAI, 299–314. doi:10.1007/978-3-030-65390-3_23.
[13] Akter, S., Sumon, R. I., Ali, H., & Kim, H. C. (2024). Utilizing Convolutional Neural Networks for the Effective Classification of Rice Leaf Diseases through a Deep Learning Approach. Electronics (Switzerland), 13(20), 4095. doi:10.3390/electronics13204095.
[14] Latif, G., Abdelhamid, S. E., Mallouhy, R. E., Alghazo, J., & Kazimi, Z. A. (2022). Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants, 11(17), 2230. doi:10.3390/plants11172230.
[15] Pallathadka, H., Ravipati, P., Sekhar Sajja, G., Phasinam, K., Kassanuk, T., Sanchez, D. T., & Prabhu, P. (2022). Application of machine learning techniques in rice leaf disease detection. Materials Today: Proceedings, 51, 2277–2280. doi:10.1016/j.matpr.2021.11.398.
[16] Kiranmai, B., Venu Vasantha, S., & Rama Krishna, S. (2021). Techniques for Rice Leaf Disease Detection using Machine LearningAlgorithms. Article in International Journal of Engineering and Technical Research, 9(8), 162–166. www.ijert.org
[17] Shrivastava, V. K., & Pradhan, M. K. (2021). Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 103(1), 17–26. doi:10.1007/s42161-020-00683-3.
[18] Sethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Deep feature based rice leaf disease identification using support vector machine. Computers and Electronics in Agriculture, 175, 105527. doi:10.1016/j.compag.2020.105527.
[19] Aggarwal, M., Khullar, V., & Goyal, N. (2023). Exploring Classification of Rice Leaf Diseases using Machine Learning and Deep Learning. Proceedings of 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023, 1–6. doi:10.1109/ICIPTM57143.2023.10117854.
[20] Rajpoot, V., Tiwari, A., & Jalal, A. S. (2023). Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods. Multimedia Tools and Applications, 82(23), 36091–36117. doi:10.1007/s11042-023-14969-y.
[21] Atheeswaran, A., Maheshkumar, K., Jayareka, K. S., Janani, B., Lakshmanan, K., & Sobiyaa, P. (2024). Deep Learning-Based Diagnosis of Rice Sheath Rot Disease: A Wavelet-Filtered Approach for Feature Extraction and Analysis. 2024 International Conference on Knowledge Engineering and Communication Systems, 1–8. doi:10.1109/ICKECS61492.2024.10616704.
[22] Nandita, Jaiswal, A., & Sachdeva, N. (2024). Early Prediction of Rice Leaf Disease Using Deep Neural Network Models. Proceedings of the 14th International Conference on Cloud Computing, Data Science and Engineering, Confluence 2024, 426–429. doi:10.1109/Confluence60223.2024.10463400.
[23] N, K., Narasimha Prasad, L. V., Pavan Kumar, C. S., Subedi, B., Abraha, H. B., & Sathishkumar, V. E. (2021). Rice leaf diseases prediction using deep neural networks with transfer learning. Environmental Research, 198, 111275. doi:10.1016/j.envres.2021.111275.
[24] Muhammad Juman Jhatial, Shaikh, D. R. A., Noor Ahmed Shaikh, Samina Rajper, Rafaqat Hussain Arain, Ghulam Hussain Chandio, Abdul Qadir Bhangwar, Hidayatullah Shaikh, & Kashif Hussain Shaikh. (2022). Deep Learning-Based Rice Leaf Diseases Detection Using Yolov5. Sukkur IBA Journal of Computing and Mathematical Sciences, 6(1), 49–61. doi:10.30537/sjcms.v6i1.1009.
[25] Saputra, R. A., Suharyanto, Wasiyanti, S., Saefudin, D. F., Supriyatna, A., & Wibowo, A. (2020). Rice Leaf Disease Image Classifications Using KNN Based on GLCM Feature Extraction. Journal of Physics: Conference Series, 1641(1), 12080. doi:10.1088/1742-6596/1641/1/012080.
[26] Aggarwal, M., Khullar, V., Goyal, N., Singh, A., Tolba, A., Thompson, E. B., & Kumar, S. (2023). Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification. Agriculture (Switzerland), 13(5), 936. doi:10.3390/agriculture13050936.
[27] Bharanidharan, N., Sannasi Chakravarthy, S. R., Rajaguru, H., Vinoth Kumar, V., Mahesh, T. R., & Guluwadi, S. (2023). Multiclass Paddy Disease Detection Using Filter-Based Feature Transformation Technique. IEEE Access, 11, 3322587. doi:10.1109/ACCESS.2023.3322587.
[28] Xiangsuo, F., Wenlin, Q., Gaoshan, F., Qingnan, H., & Lei, M. (2024). Dim and Small Target Detection Based on Improved Bilateral Filtering and Gaussian Motion Probability Estimation. IEEE Photonics Journal, 16(5), 3443239. doi:10.1109/JPHOT.2024.3443239.
[29] Ge, H., Wang, L., Liu, M., Zhao, X., Zhu, Y., Pan, H., & Liu, Y. (2023). Pyramidal Multiscale Convolutional Network with Polarized Self-Attention for Pixel-Wise Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–18. doi:10.1109/TGRS.2023.3244805.
[30] Sankalana, N. (2020). Rice leaf disease image dataset. Kaggle Dataset. Available online: https://www.kaggle.com/datasets/nirmalsankalana/rice-leaf-disease-image (accessed on May 2025).
[31] Mendeley Dataset (2020). Rice leaf disease dataset (Version 1). Mendeley Data. Available online: https://data.mendeley.com/datasets/dwtn3c6w6p/1 (accessed on May 2025).
[32] Kathiresan, G., Anirudh, M., Nagharjun, M., & Karthik, R. (2021). Disease detection in rice leaves using transfer learning techniques. Journal of Physics: Conference Series, 1911(1), 012004. doi:10.1088/1742-6596/1911/1/012004.
[33] Padhi, J., Mishra, K., Ratha, A. K., Behera, S. K., Sethy, P. K., & Nanthaamornphong, A. (2025). Enhancing paddy leaf disease diagnosis -a hybrid CNN model using simulated thermal imaging. Smart Agricultural Technology, 10. doi:10.1016/j.atech.2025.100814.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
