Antioxidant and Molecular Docking of Morinda citrifolia Leaves Extract as an Alternative Infertility Treatment
Downloads
The male reproductive system shows heightened sensitivity to oxidative stress from reactive oxygen species. However, the effects of free radical exposure can be mitigated by antioxidant compounds. This investigation sought to characterize the active compounds from secondary metabolites that contribute to the activity of Morinda citrifolia leaves. This study began by extracting M. citrifolia leaves using n-hexane, ethyl acetate, and methanol solvents. Following extraction, the samples underwent phytochemical profiling and GC-MS analysis to determine the active compounds in the M. citrifolia leaf extract. The DPPH method was employed for testing antioxidant activity and analyzed using ultraviolet-visible (UV-VIS) spectrophotometry. Molecular docking analysis was carried out on five major compounds from the M. citrifolia leaf extract against three selected proteins: the FSH (PDB ID: 1XWD), testosterone (PDB ID: 1I9J), and androgen (PDB ID: 1E3G) receptors. The analytical results demonstrated that the polar extract (methanol) of M. citrifolia leaf exhibited the highest antioxidant activity, indicated by a lower IC50 (13.1), than those found in the n-hexane and ethyl acetate extracts. The active compounds contributing to this activity were squalene (n-hexane), phytol (ethyl acetate), and 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl (methanol). Docking results showed that the ethyl acetate extract exhibited higher binding affinity through tocopherol and stigmasterol compounds than the n-hexane extract. These findings collectively demonstrate that M. citrifolia leaves demonstrate significant antioxidant activity across all levels and potential as agents against infertility due to their high binding affinities to the target receptors.
Downloads
[1] Bardhi, E., & Drakopoulos, P. (2021). Update on male infertility. Journal of Clinical Medicine, 10(20), 4771. doi:10.3390/jcm10204771.
[2] Hafezi, S. G., Ranjbar, M., Ghasemabadi, A., Effati, S., Naserghandi, A., Namakin, K., & Allameh, F. (2025). Two dynamical models for male infertility and their stability and sensitivity analysis. Scientific Reports, 15(1), 18873. doi:10.1038/s41598-025-03993-7.
[3] Chau, M. H. K., Li, Y., Dai, P., Shi, M., Zhu, X., Chung, J. P. W., Kwok, Y. K., Choy, K. W., Kong, X., & Dong, Z. (2022). Investigation of the genetic etiology in male infertility with apparently balanced chromosomal structural rearrangements by genome sequencing. Asian Journal of Andrology, 24(3), 248–254. doi:10.4103/aja2021106.
[4] Huijben, M., Huijsmans, R. L. N., Lock, M. T. W. T., de Kemp, V. F., de Kort, L. M. O., & van Breda, J. H. M. K. (2023). Clomiphene citrate for male infertility: A systematic review and meta‐analysis. Andrology, 11(6), 987–996. doi:10.1111/andr.13388.
[5] Crosnoe, L. E., Grober, E., Ohl, D., & Kim, E. D. (2013). Exogenous testosterone: A preventable cause of male infertility. Translational Andrology and Urology, 2(2), 106–113. doi:10.3978/j.issn.2223-4683.2013.06.01.
[6] Rotimi, D. E., & Singh, S. K. (2024). Implications of lifestyle factors on male reproductive health. Jornal Brasileiro de Reproducao Assistida, 28(2), 320–330. doi:10.5935/1518-0557.20240007.
[7] Thomas, J., Suarez Arbelaez, M. C., Narasimman, M., Weber, A. R., Blachman-Braun, R., White, J. T., Ledesma, B., Ghomeshi, A., Jara-Palacios, M. A., & Ramasamy, R. (2023). Efficacy of Clomiphene Citrate Versus Enclomiphene Citrate for Male Infertility Treatment: A Retrospective Study. Cureus, 15(7), 41476. doi:10.7759/cureus.41476.
[8] Krzastek, S. C., Sharma, D., Abdullah, N., Sultan, M., MacHen, G. L., Wenzel, J. L., Ells, A., Chen, X., Kavoussi, M., Costabile, R. A., Smith, R. P., & Kavoussi, P. K. (2019). Long-term safety and efficacy of clomiphene citrate for the treatment of hypogonadism. Journal of Urology, 202(5), 1029–1035. doi:10.1097/JU.0000000000000396.
[9] Lahimer, M., Abou Diwan, M., Montjean, D., Cabry, R., Bach, V., Ajina, M., Ben Ali, H., Benkhalifa, M., & Khorsi-Cauet, H. (2023). Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Frontiers in Public Health, 11, 1232646. doi:10.3389/fpubh.2023.1232646.
[10] Wang, Y., Fu, X., & Li, H. (2025). Mechanisms of oxidative stress-induced sperm dysfunction. Frontiers in Endocrinology, 16, 1520835. doi:10.3389/fendo.2025.1520835.
[11] Aitken, R. J., Gibb, Z., Baker, M. A., Drevet, J., & Gharagozloo, P. (2016). Causes and consequences of oxidative stress in Spermatozoa. Reproduction, Fertility and Development, 28(1–2), 1–10. doi:10.1071/RD15325.
[12] Martin-Hidalgo, D., Bragado, M. J., Batista, A. R., Oliveira, P. F., & Alves, M. G. (2019). Antioxidants and male fertility: From molecular studies to clinical evidence. Antioxidants, 8(4), 89. doi:10.3390/antiox8040089.
[13] Ogawa, S., Ota, K., Nishizawa, K., Shinagawa, M., Katagiri, M., Kikuchi, H., Kobayashi, H., Takahashi, T., & Yoshida, H. (2024). Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants, 13(6), 635. doi:10.3390/antiox13060635.
[14] Wang, M. Y., West, B. J., Jensen, C. J., Nowicki, D., Su, C., Palu, A. K., & Anderson, G. (2002). Morinda citrifolia (Noni): A literature review and recent advances in Noni research. Acta Pharmacologica Sinica, 23(12), 1127–1141.
[15] Etania, V., Roma, S., Siregar, N., Lubis, P. A. P., Girsang, E., & Nasution, A. N. (2020). Identification phytochemistry compounds of Batak onion, noni leaf and extract God’s crown fruit. International Journal of Scientific Engineering and Science, 4(2), 6–7.
[16] Setyani, W., & Setyowati, H. (2018). Phytochemical investigation of noni (Morinda citrifolia L.) leaves extract applicated for sunscreen product. Malaysian Journal of Fundamental and Applied Sciences, 14(1–2), 164–167. doi:10.11113/mjfas.v14n1-2.996.
[17] Heryanto, R., Arlianti, T., Wahyuni, S., & Purwiyanti, S. (2023). Observation and morphological character of Noni (Morinda citrifolia L.) in Ciampea, Bogor Regency. E3S Web of Conferences, 373, 3017. doi:10.1051/e3sconf/202337303017.
[18] Potterat, O., & Hamburger, M. (2007). Morinda citrifolia (Noni) Fruit - Phytochemistry, Pharmacology, Safety. Planta Medica, 73(3), 191–199. doi:10.1055/s-2007-967115.
[19] Dewi, R., Siregar, T. N., Wahyuni, S., & Sutriana, A. (2024). Identification of secondary metabolite compounds in n-hexane extract of noni (Morinda citrifolia Linn) leaves through phytochemical test. IOP Conference Series: Earth and Environmental Science, 1356(1), 12092. doi:10.1088/1755-1315/1356/1/012092.
[20] Hou, S., Ma, D., Wu, S., Hui, Q., & Hao, Z. (2025). Morinda citrifolia L.: A Comprehensive Review on Phytochemistry, Pharmacological Effects, and Antioxidant Potential. Antioxidants, 14(3), 295. doi:10.3390/antiox14030295.
[21] Dzah, C. S., Kpodo, F. M. K., Asante-Donyinah, D., & Boateng, N. A. S. (2024). The influence of Morinda citrifolia fruit maturity level, parts and storage length on total phenols, ascorbic acid, antioxidant activity and ethylene gas emission. Food Chemistry Advances, 4, 100599. doi:10.1016/j.focha.2023.100599.
[22] Puruhita, R., Sulistyoningsih, D., Kristiyanti, W., & Aulia Rachma, F. (2024). Analysis of Flavonoid Compounds from Ethanol Extract of Moringa Leaves (Moringa Oleifera L.) Using Ftir and Hplc. Science and Community Pharmacy Journal, 3(2), 217–226. doi:10.63520/scpj.v3i2.583.
[23] Budianta, T. D. W., Widyawati, P. S., & Raharjo, S. J. (2024). Study on the Profile of Noni (Morinda sp.) Leaves as an Ingredient in Herbal Drinks. BIO Web of Conferences, 98, 1006. doi:10.1051/bioconf/20249801006.
[24] Zin, Z. M., Abdul Hamid, A., Osman, A., & Saari, N. (2006). Antioxidative activities of chromatographic fractions obtained from root, fruit and leaf of Mengkudu (Morinda citrifolia L.). Food Chemistry, 94(2), 169-178. doi:10.1016/j.foodchem.2004.08.048.
[25] Maulina, S. N., Sari, N., & Hamsi, F. (2022). Antioxidant Activity Leaves of Mengkudu (Morinda Citrifolia L.) Skin Extract in Serum Preparation with Dpph Method. Journal of Pharmaceutical and Sciences, 5(2), 346–354. doi:10.36490/journal-jps.com.v5i2.132.
[26] Zin, S. R. M., Zakri, T. S. A. T., Fazir, P. N. N. A., & Asman, S. (2023). Extraction of phytochemical in Morinda citrifolia L. leaves by using different polarity solvents. Enhanced Knowledge in Sciences and Technology, 3(2), 286–291.
[27] Hassanpour, S. H., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine, 13(4), 354–376. doi:10.22038/AJP.2023.21774.
[28] Ofeimun, J. O., Odoh, J. O., Eze, G. I., Benjamin, G., & Ayinde, B. A. (2023). comparative effects of fresh and fermented fruit juice of morinda citrifolia (rubiaceae) on reproductive parameters in adult male rats. African Journal of Health, Safety and Environment, 4(2), 01–10. doi:10.52417/ajhse.v4i2.364.
[29] Ariani, M., Febriana, A., Sari, F. D., Khairunisa, K., Atifah, Y., & Rahmatika, H. (2023). Effect of Noni Extract (Morinda citrifolia L.) on Spermatozoa Quality of Mice (Mus musculus L.). Jurnal Natur Indonesia, 21(2), 87. doi:10.31258/jnat.21.2.87-92.
[30] Christin-Maitre, S., & Young, J. (2022). Androgens and spermatogenesis. Annales d’Endocrinologie, 83(3), 155–158. doi:10.1016/j.ando.2022.04.010.
[31] Maroto, M., Torvisco, S. N., García-Merino, C., Fernández-González, R., & Pericuesta, E. (2025). Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis. Biomolecules, 15(4), 500. doi:10.3390/biom15040500.
[32] Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685–688. doi:10.5897/AJB2005.000-3127.
[33] Jiang, Z., Kempinski, C., & Chappell, J. (2016). Extraction and Analysis of Terpenes/Terpenoids. Current Protocols in Plant Biology, 1(2), 345–358. doi:10.1002/cppb.20024.
[34] Das, F. M., & MV, A. (2021). Phytochemical screening, antioxidant and antibacterial activity of leaf extract of Morinda citrifolia L. against Escherichia coli & Pseudomonas aeruginosa. International Journal of Herbal Medicine, 9(6), 28–31. doi:10.22271/flora.2021.v9.i6a.781.
[35] Borges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from acacia dealbata and olea europaea. Antibiotics, 9(2), 48. doi:10.3390/antibiotics9020048.
[36] Zhou, S., & Huang, G. (2024). The chemical composition and pharmacological activities of Morinda citrifolia. Applied Biological Chemistry, 67(1), 104. doi:10.1186/s13765-024-00960-0.
[37] Lee, J. E., Jayakody, J. T. M., Kim, J. Il, Jeong, J. W., Choi, K. M., Kim, T. S., Seo, C., Azimi, I., Hyun, J. M., & Ryu, B. M. (2024). The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods, 13(19), 3151. doi:10.3390/foods13193151.
[38] Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules, 28(2), 887. doi:10.3390/molecules28020887.
[39] Fidrianny, I., Rizkiya, A., & Ruslan, K. (2015). Antioxidant activities of various fruit extracts from three solanum sp. using DPPH and ABTS method and correlation with phenolic, flavonoid and carotenoid content. Journal of Chemical and Pharmaceutical Research, 7(5), 666–672.
[40] Jebakumar, A. Z., Nondo, H. S., George, S. K., & Manoj, G. (2012). Natural anti-oxidants and in-vitro methods for anti-oxidant activity. International Journal of Pharmacology Research, 2(1), 46-55.
[41] Permatananda, P. A. N. K., Pandit, I. G. S., Udiyani, D. P. C., & Wimpy. (2024). Antioxidant activity of kintamani siamese orange peel extract (Citrus nobilis) different polar solvent: an in vitro experimental study. Multidisciplinary Science Journal, 6(3), 2024020. doi:10.31893/MULTISCIENCE.2024020.
[42] Faisal, S., Larbie, C., Mensah, J., Genfi, A. K. A., & Brobbey, A. A. (2023). Comparative Analyses of the Antimicrobial, Antioxidant, and Phytochemical Composition of Two Species of Moringa in Ghana. European Journal of Medicinal Plants, 34(9), 25–42. doi:10.9734/ejmp/2023/v34i91156.
[43] Haruna, A. (2023). GC-MS profiling and antifungal activities of Morinda citrifolia L. leaf extract against fungal pathogens of crown rot disease of banana. Journal of Phytology, 15, 132–138. doi:10.25081/jp.2023.v15.8423.
[44] Jongjai, S., Saising, J., Charoensub, R., & Phuneerub, P. (2021). Quality evaluation, GC/MS analysis and antimicrobial activities of Morinda CitrifoHa against oral Microorganisms. Journal of Advanced Pharmacy Education and Research, 11(3), 70–76. doi:10.51847/Ry6Z3gCr2d.
[45] Sudmoon, R., Kaewdaungdee, S., Ameamsri, U., Tanee, T., Siripiyasing, P., Wonok, W., & Chaveerach, A. (2022). Investigation of Morinda citrifolia Activities through Pinoresinol and α-EG Related Gene Expression. Plants, 11(15), 1985. doi:10.3390/plants11151985.
[46] Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H. S., & Jeon, Y. J. (2018). Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. Journal of Food Biochemistry, 42(5), 12628. doi:10.1111/jfbc.12628.
[47] Hameed, I. H., Hussein, H. J., Kareem, M. A., & Hamad, N. S. (2015). Identification of five newly described bioactive chemical compounds in Methanolic extract of Mentha viridis by using gas chromatography – mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(7), 107–125. doi:10.5897/JPP2015.0349.
[48] Sogandi, S., & Rabima, R. (2019). Identification of Active Compound Extracts from Noni Fruit (Morinda citrifolia L.) and Its Potential as Antioxidants. Jurnal Kimia Sains Dan Aplikasi, 22(5), 206–212. doi:10.14710/jksa.22.5.206-212.
[49] Santos, C. C. de M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., Costa, J. P., de Sousa, D. P., de Freitas, R. M., & de Almeida, R. N. (2013). Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models. Neuroscience Journal, 2013, 1–9. doi:10.1155/2013/949452.
[50] Yu, X., Zhao, M., Liu, F., Zeng, S., & Hu, J. (2013). Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Research International, 51(1), 397–403. doi:10.1016/j.foodres.2012.12.044.
[51] Chen, Z., Liu, Q., Zhao, Z., Bai, B., Sun, Z., Cai, L., Fu, Y., Ma, Y., Wang, Q., & Xi, G. (2021). Effect of hydroxyl on antioxidant properties of 2,3-dihydro-3,5-dihydroxy-6-methyl-4: H -pyran-4-one to scavenge free radicals. RSC Advances, 11(55), 34456–34461. doi:10.1039/d1ra06317k.
[52] Wu, Y. C., & Sung, W. W. (2024). Clomiphene Citrate Treatment as an Alternative Therapeutic Approach for Male Hypogonadism: Mechanisms and Clinical Implications. Pharmaceuticals, 17(9), 1233. doi:10.3390/ph17091233.
[53] Da Ros, C. T., Da Ros, L. U., & Da Ros, J. P. U. (2022). The role of clomiphene citrate in late onset male hypogonadism. International Braz J Urol, 48(5), 850–856. doi:10.1590/S1677-5538.IBJU.2021.0724.
[54] Wu, Z. Q., Chen, D. L., Lin, F. H., Lin, L., Shuai, O., Wang, J. Y., Qi, L. K., & Zhang, P. (2015). Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm. Journal of Ethnopharmacology, 164, 283–292. doi:10.1016/j.jep.2015.02.016.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
