Unveiling Multi-Dimensional Factors of Consumer Switching Intention Towards Electric Vehicles
Downloads
Objectives: This study explores consumers' intentions to switch from traditional fuel vehicles to electric vehicles (EVs) by employing the Push-Pull-Mooring (PPM) model as an analytical framework. It seeks to gain a deep understanding of how push factors (such as financial, infrastructure, privacy, and environmental risks), pull factors (such as product innovativeness, instrumental attributes, and policy support), and mooring factors (such as inertia and switching costs) influence consumers' switching decisions. Methods/Analysis: Employing a purposive sampling method, the research targets consumers in Taiwan with EV purchase experience, acknowledging the rapid growth of the EV market in Taiwan and the unique characteristics of EV consumers. The survey was conducted using a dual approach, both online and offline, distributing questionnaires through EV community platforms, owner forums, and dealership locations to ensure the diversity and representativeness of respondents. Findings: The results indicate that push factors, including financial risk, infrastructure risk, privacy risk, and environmental risk, all have a significant negative impact on switching intentions, with environmental and financial risks being the most prominent. In contrast, pull factors such as product innovativeness, instrumental attributes, and policy support show a positive influence, with product innovativeness having the most substantial effect. Regarding mooring factors, switching costs significantly negatively affect switching intentions, while inertia does not show a significant effect. This suggests that consumers are more concerned with tangible benefits and risk considerations when adopting electric vehicles rather than being constrained by existing habits. Novelty /Improvement: The originality of this study lies in its first comprehensive application of the PPM model to the context of electric vehicle adoption, providing a multidimensional and integrated analytical framework that overcomes the limitations of previous single-theory perspectives.
Downloads
[1] Fluchs, S. (2020). The diffusion of electric mobility in the European Union and beyond. Transportation Research Part D: Transport and Environment, 86, 102462. doi:10.1016/j.trd.2020.102462.
[2] Wang, S., Li, Y., Yu, Y., Ruangkanjanases, A., & Chen, S. C. (2025). Empowering the shift: Understanding influential factors in electric vehicle switching behavior. Energy Exploration & Exploitation, 43(3), 932–952. doi:10.1177/01445987251313561.
[3] Chen, C. T., Khan, A., & Chen, S. C. (2024). Modeling the impact of BDA-AI on sustainable innovation ambidexterity and environmental performance. Journal of Big Data, 11(1), 1–28. doi:10.1186/s40537-024-00995-6.
[4] Zhang, Q., Li, H., Zhu, L., Campana, P. E., Lu, H., Wallin, F., & Sun, Q. (2018). Factors influencing the economics of public charging infrastructures for EV – A review. Renewable and Sustainable Energy Reviews, 94, 500–509. doi:10.1016/j.rser.2018.06.022.
[5] Wang, S., & Khan, A. (2025). Exploring the factors driving the sustainable consumer intentions for over-the-air updates in electric vehicles. Energy Exploration & Exploitation, 43(1), 319–339. doi:10.1177/01445987241284101.
[6] Featherman, M., Jia, S. (Jasper), Califf, C. B., & Hajli, N. (2021). The impact of new technologies on consumers beliefs: Reducing the perceived risks of electric vehicle adoption. Technological Forecasting and Social Change, 169, 120847. doi:10.1016/j.techfore.2021.120847.
[7] Choo, S. Y., Vafaei-Zadeh, A., Hanifah, H., & Thurasamy, R. (2024). Predicting electric vehicles adoption: A synthesis of perceived risk, benefit and the NORM activation model. Research in Transportation Business & Management, 56, 101183. doi:10.1016/j.rtbm.2024.101183.
[8] Moon, B. (1995). Paradigms in migration research: Exploring ‘moorings’ as a schema. Progress in Human Geography, 19(4), 504–524. doi:10.1177/030913259501900404.
[9] Thilina, D., & Gunawardane, N. (2019). The effect of perceived risk on the purchase intention of electric vehicles: An extension to the technology acceptance model. International Journal of Electric and Hybrid Vehicles, 11(1), 73–84. doi:10.1504/ijehv.2019.098717.
[10] Javid, M. A., Abdullah, M., Ali, N., Shah, S. A. H., Joyklad, P., Hussain, Q., & Chaiyasarn, K. (2022). Extracting Travelers’ Preferences toward Electric Vehicles Using the Theory of Planned Behavior in Lahore, Pakistan. Sustainability (Switzerland), 14(3), 1909. doi:10.3390/su14031909.
[11] Xia, Z., Wu, D., & Zhang, L. (2022). Economic, Functional, and Social Factors Influencing Electric Vehicles’ Adoption: An Empirical Study Based on the Diffusion of Innovation Theory. Sustainability (Switzerland), 14(10), 6283. doi:10.3390/su14106283.
[12] Lin, X., Chien, S. W., Hung, C. W., Chen, S. C., & Ruangkanjanases, A. (2021). The Impact of Switching Intention of Telelearning in COVID-19 Epidemic’s Era: The Perspective of Push-Pull-Mooring Theory. Frontiers in Psychology, 12, 639589. doi:10.3389/fpsyg.2021.639589.
[13] Sun, Y., Liu, D., Chen, S., Wu, X., Shen, X. L., & Zhang, X. (2017). Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework. Computers in Human Behavior, 75, 727–738. doi:10.1016/j.chb.2017.06.014.
[14] Lai, J. Y., Debbarma, S., & Ulhas, K. R. (2012). An empirical study of consumer switching behaviour towards mobile shopping: A Push-Pull-Mooring model. International Journal of Mobile Communications, 10(4), 386–404. doi:10.1504/IJMC.2012.048137.
[15] Kordi Ghasrodashti, E. (2018). Explaining brand switching behavior using pull-push-mooring theory and the theory of reasoned action. Journal of Brand Management, 25(4), 293–304. doi:10.1057/s41262-017-0080-2.
[16] Guo, J., Shan, S., Wang, Y., & Khan, Y. A. (2021). Analyzing Chinese Customers’ Switching Intention of Smartphone Brands: Integrating the Push-Pull-Mooring Framework. Discrete Dynamics in Nature and Society, 2021(1), 6660340. doi:10.1155/2021/6660340.
[17] Handarkho, Y. D., & Harjoseputro, Y. (2020). Intention to adopt mobile payment in physical stores: Individual switching behavior perspective based on Push–Pull–Mooring (PPM) theory. Journal of Enterprise Information Management, 33(2), 285–308. doi:10.1108/JEIM-06-2019-0179.
[18] Haridasan, A. C., Fernando, A. G., & Balakrishnan, S. (2021). Investigation of consumers’ cross-channel switching intentions: A push-pull-mooring approach. Journal of Consumer Behaviour, 20(5), 1092–1112. doi:10.1002/cb.1918.
[19] Marx, T. (2025). The push-pull-mooring model of consumer service switching: a meta-analytical review to guide future research. Journal of Service Theory and Practice, 35(7), 1–29. doi:10.1108/jstp-06-2024-0201.
[20] Hu, X., Wang, S., Zhou, R., Gao, L., & Zhu, Z. (2023). Determinants of consumers’ intentions to switch to electric vehicles: a perspective of the push–pull–mooring framework. Journal of Environmental Planning and Management, 67(14), 3718–3743. doi:10.1080/09640568.2023.2232945.
[21] Ha, T. T., Nguyen, T. C., Tu, S. S., & Nguyen, M. H. (2023). Investigation of Influential Factors of Intention to Adopt Electric Vehicles for Motorcyclists in Vietnam. Sustainability (Switzerland), 15(11), 8765. doi:10.3390/su15118765.
[22] Abbasi, M., Mamdoohi, A. R., Ciari, F., & Sierpiński, G. (2024). An investigation of perceived risk dimensions in acceptability of shared autonomous vehicles, a mediation-moderation analysis. Scientific Reports, 14(1), 23276. doi:10.1038/s41598-024-74024-0.
[23] Liao, F., Molin, E., & van Wee, B. (2017). Consumer preferences for electric vehicles: a literature review. Transport Reviews, 37(3), 252–275. doi:10.1080/01441647.2016.1230794.
[24] Hardman, S., Chandan, A., Tal, G., & Turrentine, T. (2017). The effectiveness of financial purchase incentives for battery electric vehicles – A review of the evidence. Renewable and Sustainable Energy Reviews, 80, 1100–1111. doi:10.1016/j.rser.2017.05.255.
[25] Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108–119. doi:10.1016/j.apenergy.2017.10.089.
[26] Neubauer, J., & Wood, E. (2014). The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. Journal of Power Sources, 257, 12–20. doi:10.1016/j.jpowsour.2014.01.075.
[27] Berkeley, N., Bailey, D., Jones, A., & Jarvis, D. (2017). Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up. Transportation Research Part A: Policy and Practice, 106, 320–332. doi:10.1016/j.tra.2017.10.004.
[28] Axsen, J., & Kurani, K. S. (2012). Who can recharge a plug-in electric vehicle at home? Transportation Research Part D: Transport and Environment, 17(5), 349–353. doi:10.1016/j.trd.2012.03.001.
[29] Hajli, N., & Lin, X. (2016). Exploring the Security of Information Sharing on Social Networking Sites: The Role of Perceived Control of Information. Journal of Business Ethics, 133(1), 111–123. doi:10.1007/s10551-014-2346-x.
[30] Taeihagh, A., & Lim, H. S. M. (2019). Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transport Reviews, 39(1), 103–128. doi:10.1080/01441647.2018.1494640.
[31] Cichy, P., Salge, T. O., & Kohli, R. (2021). Privacy Concerns and Data Sharing in the Internet of Things: Mixed Methods Evidence from Connected Cars. MIS Quarterly, 45(4), 1863–1891. doi:10.25300/misq/2021/14165.
[32] Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53–64. doi:10.1111/j.1530-9290.2012.00532.x.
[33] Noel, L., Zarazua de Rubens, G., Sovacool, B. K., & Kester, J. (2019). Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety. Energy Research & Social Science, 48, 96–107. doi:10.1016/j.erss.2018.10.001.
[34] Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy, 48, 717–729. doi:10.1016/j.enpol.2012.06.009.
[35] Diao, Q., Sun, W., Yuan, X., Li, L., & Zheng, Z. (2016). Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies. Applied Energy, 178, 567–578. doi:10.1016/j.apenergy.2016.05.116.
[36] Rogers, E. M. (2003). Diffusion of Innovations (5th Ed.). Free Press, New York, United States.
[37] Cherubini, S., Iasevoli, G., & Michelini, L. (2015). Product-service systems in the electric car industry: Critical success factors in marketing. Journal of Cleaner Production, 97, 40–49. doi:10.1016/j.jclepro.2014.02.042.
[38] Jansson, J., Nordlund, A., & Westin, K. (2017). Examining drivers of sustainable consumption: The influence of norms and opinion leadership on electric vehicle adoption in Sweden. Journal of Cleaner Production, 154, 176–187. doi:10.1016/j.jclepro.2017.03.186.
[39] Franke, T., & Krems, J. F. (2013). What drives range preferences in electric vehicle users? Transport Policy, 30, 56–62. doi:10.1016/j.tranpol.2013.07.005.
[40] Kley, F., Lerch, C., & Dallinger, D. (2011). New business models for electric cars-A holistic approach. Energy Policy, 39(6), 3392–3403. doi:10.1016/j.enpol.2011.03.036.
[41] Jensen, A. F., Cherchi, E., & Mabit, S. L. (2013). On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transportation Research Part D: Transport and Environment, 25, 24–32. doi:10.1016/j.trd.2013.07.006.
[42] Skippon, S., & Garwood, M. (2011). Responses to battery electric vehicles: UK consumer attitudes and attributions of symbolic meaning following direct experience to reduce psychological distance. Transportation Research Part D: Transport and Environment, 16(7), 525–531. doi:10.1016/j.trd.2011.05.005.
[43] Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56–68. doi:10.1016/j.trd.2016.03.011.
[44] Holtsmark, B., & Skonhoft, A. (2014). The Norwegian support and subsidy policy of electric cars. Should it be adopted by other countries? Environmental Science & Policy, 42, 160–168. doi:10.1016/j.envsci.2014.06.006.
[45] Langbroek, J. H. M., Franklin, J. P., & Susilo, Y. O. (2016). The effect of policy incentives on electric vehicle adoption. Energy Policy, 94, 94–103. doi:10.1016/j.enpol.2016.03.050.
[46] Chen, Y. H., & Keng, C. J. (2019). Utilizing the Push-Pull-Mooring-Habit framework to explore users’ intention to switch from offline to online real-person English learning platform. Internet Research, 29(1), 167–193. doi:10.1108/IntR-09-2017-0343.
[47] Polites, G. L., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21–42. doi:10.25300/misq/2012/36.1.02.
[48] Rezvani, Z., Jansson, J., & Bodin, J. (2015). Advances in consumer electric vehicle adoption research: A review and research agenda. Transportation Research Part D: Transport and Environment, 34, 122–136. doi:10.1016/j.trd.2014.10.010.
[49] Bansal, H. S., Taylor, S. F., & James, Y. S. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96–115. doi:10.1177/0092070304267928.
[50] Koester, N., Cichy, P., Antons, D., & Salge, T. O. (2022). Perceived privacy risk in the Internet of Things: determinants, consequences, and contingencies in the case of connected cars. Electronic Markets, 32(4), 2333–2355. doi:10.1007/s12525-022-00522-6.
[51] Mukesh, & Narwal, M. (2023). Predicting consumer purchase intention on electric cars in India: Mediating role of attitude. Business Strategy & Development, 6(4), 942–956. Portico. doi:10.1002/bsd2.289.
[52] Shanmugavel, N., & Micheal, M. (2022). Exploring the marketing related stimuli and personal innovativeness on the purchase intention of electric vehicles through Technology Acceptance Model. Cleaner Logistics and Supply Chain, 3, 100029. doi:10.1016/j.clscn.2022.100029.
[53] Schuitema, G., Anable, J., Skippon, S., & Kinnear, N. (2013). The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles. Transportation Research Part A: Policy and Practice, 48, 39–49. doi:10.1016/j.tra.2012.10.004.
[54] Chonsalasin, D., Champahom, T., Jomnonkwao, S., Karoonsoontawong, A., Runkawee, N., & Ratanavaraha, V. (2024). Exploring the Influence of Thai Government Policy Perceptions on Electric Vehicle Adoption: A Measurement Model and Empirical Analysis. Smart Cities, 7(4), 2258–2282. doi:10.3390/smartcities7040089.
[55] Liu, L., Zhang, T., Avrin, A.-P., & Wang, X. (2020). Is China’s industrial policy effective? An empirical study of the new energy vehicles industry. Technology in Society, 63, 101356. doi:10.1016/j.techsoc.2020.101356.
[56] Chang, H. H., Wong, K. H., & Li, S. Y. (2017). Applying push-pull-mooring to investigate channel switching behaviors: M-shopping self-efficacy and switching costs as moderators. Electronic Commerce Research and Applications, 24, 50–67. doi:10.1016/j.elerap.2017.06.002.
[57] Wang, S., Fan, J., Zhao, D., Yang, S., & Fu, Y. (2014). Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model. Transportation, 43(1), 123–143. doi:10.1007/s11116-014-9567-9.
[58] Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling. Guilford Publications, New York, Unites States.
[59] Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. doi:10.1007/s11747-011-0261-6.
[60] Dijkstra, T. K., & Henseler, J. (2015). Consistent Partial Least Squares Path Modeling1. MIS Quarterly, 39(2), 297–316. doi:10.25300/misq/2015/39.2.02.
[61] Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39. doi:10.2307/3151312.
[62] Torkzadeh, G., Koufteros, X., & Pflughoeft, K. (2003). Confirmatory analysis of computer self-efficacy. Structural Equation Modeling, 10(2), 263–275. doi:10.1207/S15328007SEM1002_6.
[63] Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.
[64] Lim, W. K., Teo, P.-C., & Ho, T. C. F. (2024). Electric Vehicle Choices in Malaysia: A Conceptual Model Investigating Switching Intentions through the Push-Pull-Mooring Model. International Journal of Academic Research in Business and Social Sciences, 14(6), 21670. doi:10.6007/ijarbss/v14-i6/21670.
[65] Davis, P. T., & Chandrasekar, T. (2025). Understanding the impact of push-pull-mooring factors on the switching and continued usage intentions for electric three-wheelers in public transport. Sustainable Futures, 9, 100554. doi:10.1016/j.sftr.2025.100554.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
