Estimation Risk Exposure to Nickel and Cobalt in Air Using a Monte Carlo Simulation
Downloads
Exposure to airborne nickel (Ni) and cobalt (Co) poses significant non-carcinogenic health risks, particularly with chronic inhalation. This study quantifies the health risks associated with Ni and Co exposure using a Monte Carlo simulation to incorporate variability and uncertainty in exposure assessment. Air samples were analyzed to determine metal concentrations, and risk characterization was performed through the calculation of Hazard Quotient (HQ) and Target Hazard Quotient (THQ) values based on United States Environmental Protection Agency (USEPA) guidelines. The probabilistic analysis revealed that the mean HQ and THQ values for both Ni and Co exceeded the safe threshold (HQ > 1, THQ > 1), indicating a high probability of health risks across the population, especially among adults. Sensitivity analyses identified inhalation rate, exposure duration, and exposure frequency as the most influential factors, while body weight, average exposure time, and reference concentration (RfC) served as mitigating variables. The results highlight a significant potential for non-carcinogenic effects from Ni and Co inhalation, emphasizing the need for stringent air quality management and targeted public health interventions. This study demonstrates the importance of applying probabilistic risk assessment models to better understand and manage environmental health hazards.
Downloads
[1] EPA. (1989). Risk assessment guidance for superfund. Human Health Evaluation Manual Part A, I(202), 1–89. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on November 2025).
[2] WHO-IPCS. (2018). Guidance document on evaluating and expressing uncertainty in hazard characterization (2nd ed.). International Programme on Chemical Safety.
[3] Shokoohi, R., Khazaei, M., Karami, M., Seid-mohammadi, A., Khotanlou, H., Berijani, N., & Torkshavand, Z. (2021). Deterministic and probabilistic human health risk assessment approach of exposure to heavy metals in drinking water sources: A case study of a semi-arid region in the west of Iran. Journal of Environmental Health Science and Engineering, 19(1), 1047–1055. doi:10.1007/s40201-021-00671-4.
[4] Williams, R., Wilbur, S., Schnell, F. C., Wilson, J., Ogden, J. M., Wohlers, D. W., Hard, C., Kawa, M., & Citra, M. (2015). Toxicological profile for hexachlorobenzene. In ATSDR’s Toxicological Profiles (p. 386). Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp90.pdf (accessed on November 2025).
[5] Simonsen, L. O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology: A brief update. Science of The Total Environment, 432, 210–215. doi:10.1016/j.scitotenv.2012.06.009.
[6] Jia, C. Y., Hao, W., Yin, L., Yuan, H., Han, F., & Yu, J. (2024). Occupational health risk assessment of exposure to major hazardous chemicals in copper and nickel smelting enterprises. Chinese Journal of Industrial Hygiene and Occupational Diseases, 42(10), 752-756. doi:10.3760/cma.j.cn121094-20240424-00188.
[7] Wu, Y., Li, G., Yang, Y., & An, T. (2019). Pollution evaluation and health risk assessment of airborne toxic metals in both indoors and outdoors of the Pearl River Delta, China. Environmental Research, 179, 108793. doi:10.1016/j.envres.2019.108793.
[8] Tunggala, S., Ken Amasita Saadjad, & Denny Robert Raintama. (2024). Komunikasi Partisipatif Untuk Mengurangi Dampak Lingkungan Pada Aktivitas Pertambangan di Morowali. Jurnal ISO: Jurnal Ilmu Sosial, Politik Dan Humaniora, 4(1), 12. doi:10.53697/iso.v4i1.1774.
[9] Wulandari, S., Mallongi, A., Budimawan, Birawida, A. B., Noor, N. N., & Alimin Maidin, M. (2024). Probabilistic Simulation and Sensitivity of Health Risks from Nickel and Cobalt Deposition Around the Mine. Pharmacognosy Journal, 16(5), 1159–1163. doi:10.5530/pj.2024.16.189.
[10] Varmazyari, Z., Ghannadpour, S. S., & Katibeh, H. (2025). Determination of cobalt concentration using nonlinear regression and Monte Carlo simulation in Zafarghand Region, Isfahan. Iranian Journal of Earth Sciences, 17(1), 1–9. doi:10.57647/j.ijes.2025.1701.08.
[11] Wang, J., Wang, B., Zhao, Q., Cao, J., Xiao, X., Zhao, D., Chen, Z., & Wu, D. (2025). Sources analysis and risk assessment of heavy metals in soil in a polymetallic mining area in southeastern Hubei based on Monte Carlo simulation. Ecotoxicology and Environmental Safety, 290(117607). doi:10.1016/j.ecoenv.2024.117607.
[12] Konnunaho, J., Eilu, P., Törmänen, T., Karinen, T., Ranta, J.-P., Rasilainen, K., Nykänen, V., Pokki, J., & Dehaine, Q. (2023). A mining industry overview of cobalt in Finland: exploration, deposits and utilization. Geoenergy, 1(1). doi:10.1144/geoenergy2023-016.
[13] Dieu Souffit, G., Saïdou, Bobbo Modibo, O., Lepoire, D., & Tokonami, S. (2022). Risk Assessment of Exposure to Natural Radiation in Soil Using RESRAD-ONSITE and RESRAD-BIOTA in the Cobalt-Nickel Bearing Areas of Lomié in Eastern Cameroon. Radiation, 2(2), 177–192. doi:10.3390/radiation2020013.
[14] Shekoohiyan, S., & Mehrabi, F. (2024). Health risk assessment of heavy metals in precipitated dust in goldsmith workshops and simulation using Monte Carlo method. Case Studies in Chemical and Environmental Engineering, 10(100973). doi:10.1016/j.cscee.2024.100973.
[15] Sakan, S., Mihajlidi-Zelić, A., Sakan, N., Frančišković-Bilinski, S., Kodranov, I., & Đorđević, D. (2024). Potentially toxic elements in sediments near mines—a comprehensive approach for the assessment of pollution status and associated risk for the surface water environment. Environmental Science and Pollution Research, 31(11), 16613–16628. doi:10.1007/s11356-024-32178-4.
[16] Paul, M. B., Ankan, A. D., Deb, H., & Ahasan, M. M. (2023). A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding. Radiation Physics and Chemistry, 202(110476). doi:10.1016/j.radphyschem.2022.110476.
[17] Li, C., Yan, J., Yao, J., Xie, R., Yu, H., Yu, W., Meng, Q., & Dong, P. (2025). Unveiling priority control toxic metal in cover soil of anti-seepage tailings ponds: Insights from multi-media and probabilistic risk model. Process Safety and Environmental Protection, 197(107034). doi:10.1016/j.psep.2025.107034.
[18] Mohammadpour, A., Abbasi, F., Shahsavani, E., & Kazemi, A. (2025). The impact of mining on the ecosystem of central Iran’s Wetland: A probabilistic approach to assessing ecological risk. Environmental Technology and Innovation, 38(104131). doi:10.1016/j.eti.2025.104131.
[19] Saintilan, N. J., Ikenne, M., Bernasconi, S. M., Toma, J., Creaser, R. A., Souhassou, M., Allaz, J. M., Karfal, A., Maacha, L., & Spangenberg, J. E. (2023). The World’s Highest-Grade Cobalt Mineralization at Bou Azzer Associated with Gondwana Supercontinent Breakup, Serpentinite and Kellwasser Hydrocarbon Source Rocks. American Journal of Science, 323, 1–20. doi:10.2475/001c.91400.
[20] Ou, R., Huang, H., He, X., Lin, S., Ou, D., Li, W., Qiu, J., & Wang, L. (2023). Ecotoxicology of Polymetallic Nodule Seabed Mining: The Effects of Cobalt and Nickel on Phytoplankton Growth and Pigment Concentration. Toxics, 11(12). doi:10.3390/toxics11121005.
[21] Mohammadi, A., Mansour, S. N., Najafi, M. L., Toolabi, A., Abdolahnejad, A., Faraji, M., & Miri, M. (2022). Probabilistic risk assessment of soil contamination related to agricultural and industrial activities. Environmental Research, 203(111837). doi:10.1016/j.envres.2021.111837.
[22] Thyssen, J. P. (2011). Nickel and cobalt allergy before and after nickel regulation – evaluation of a public health intervention. Contact Dermatitis, 65(s1), 1–68. Portico. doi:10.1111/j.1600-0536.2011.01957.x.
[23] Askari, M., Soleimani, H., Babakrpur Nalosi, K., Saeedi, R., Abolli, S., Ghani, M., Abtahi, M., & Alimohammadi, M. (2024). Bottled water safety evaluation: A comprehensive health risk assessment of oral exposure to heavy metals through deterministic and probabilistic approaches by Monte Carlo simulation. Food and Chemical Toxicology, 185(114492). doi:10.1016/j.fct.2024.114492.
[24] Ebrahimzadeh, G., Omer, A. K., Naderi, M., & Sharafi, K. (2024). Human health risk assessment of potentially toxic and essential elements in medicinal plants consumed in Zabol, Iran, using the Monte Carlo simulation method. Scientific Reports, 14(1). doi:10.1038/s41598-024-75159-w.
[25] Mirzaei, N., Kalteh, S., Zamani-Badi, H., Moradpour, H., Parmoozeh, Z., & Baziar, M. (2023). Estimating human health risks associated with heavy metal exposure from bottled water using Monte Carlo simulation. Heliyon, 9(10). doi:10.1016/j.heliyon.2023.e20647.
[26] Zhang, B., Su, Y., & Shah, S. Y. A. (2023). Uncertainty Evaluation of Soil Heavy Metal(loid) Pollution and Health Risk in Hunan Province: A Geographic Detector with Monte Carlo Simulation. Toxics, 11(12). doi:10.3390/toxics11121006.
[27] Panqing, Y., Abliz, A., Xiaoli, S., & Aisaiduli, H. (2023). Human health-risk assessment of heavy metal–contaminated soil based on Monte Carlo simulation. Scientific Reports, 13(1). doi:10.1038/s41598-023-33986-3.
[28] Abedi, A. samad, Hoseini, H., Mohammadi-Nasrabadi, F., Rostami, N., & Esfarjani, F. (2023). Consumer health risk assessment of Arsenic and Mercury in hen eggs through Monte Carlo simulations. BMC Public Health, 23(1). doi:10.1186/s12889-023-16223-4.
[29] Orosun, M. M. (2021). Assessment of arsenic and its associated health risks due to mining activities in parts of North-central Nigeria: Probabilistic approach using Monte Carlo. Journal of Hazardous Materials, 412(125262). doi:10.1016/j.jhazmat.2021.125262.
[30] Rezayani, N., Mirmohammadi, M., & Mehrdadi, N. (2022). Determination of Selected Heavy Metals in Air Samples and Human Health Risk Assessment in Tehran City, Iran. Iranian Journal of Chemistry and Chemical Engineering, 41(8), 2674–2692. doi:10.30492/IJCCE.2022.139867.4429.
[31] Gu, X., Wang, Z., Wang, J., Ouyang, W., Wang, B., Xin, M., Lian, M., Lu, S., Lin, C., He, M., & Liu, X. (2022). Sources, trophodynamics, contamination and risk assessment of toxic metals in a coastal ecosystem by using a receptor model and Monte Carlo simulation. Journal of Hazardous Materials, 424(127482). doi:10.1016/j.jhazmat.2021.127482.
[32] Gaurav, V. K., & Sharma, C. (2020). Estimating health risks in metal contaminated land for sustainable agriculture in peri-urban industrial areas using Monte Carlo probabilistic approach. Sustainable Computing: Informatics and Systems, 28, 100310. doi:10.1016/j.suscom.2019.01.012.
[33] Mallongi, A., Rauf, A. U., Daud, A., Hatta, M., Al-Madhoun, W., Amiruddin, R., Stang, S., Wahyu, A., & Astuti, R. D. P. (2022). Health risk assessment of potentially toxic elements in Maros karst groundwater: a Monte Carlo simulation approach. Geomatics, Natural Hazards and Risk, 13(1), 338–363. doi:10.1080/19475705.2022.2027528.
[34] Shekoohiyan, S., Mahdavianpour, M., & Aghayani, E. (2023). Risk assessment and modeling of heavy metals in universal and local types of tobaccos. International Journal of Environmental Analytical Chemistry, 103(13), 2965–2980. doi:10.1080/03067319.2021.1900151.
[35] Zang, F., Wang, S., Nan, Z., Ma, J., Zhang, Q., Chen, Y., & Li, Y. (2017). Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma, 305, 188–196. doi:10.1016/j.geoderma.2017.06.008
[36] Chen, X., Ward, T. J., Sarkar, C., Ho, K. F., & Webster, C. (2022). Health risks of adults in Hong Kong related to inhalation of particle-bound heavy metal(loid)s. Air Quality, Atmosphere and Health, 15(4), 691–706. doi:10.1007/s11869-021-01115-6.
[37] Karimian, S., Shekoohiyan, S., & Moussavi, G. (2021). Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Advances, 11(14), 8080–8095. doi:10.1039/d0ra08833a.
[38] Chowdhury, T. A., Morshed, A. J. M., Islam, M. M. M., Islam, M. A., Chakraborty, D., & Azad, A. K. M. S. U. (2025). Heavy metal contamination, nutritional composition, and health risk assessment of biscuits: A Monte Carlo simulation approach. Food Chemistry Advances, 7(100944). doi:10.1016/j.focha.2025.100944.
[39] Soltanpour, Z., Rasoulzadeh, Y., & Mohammadian, Y. (2023). Occupational Exposure to Metal Fumes Among Iranian Welders: Systematic Review and Simulation-Based Health Risk Assessment. Biological Trace Element Research, 201(3), 1090–1100. doi:10.1007/s12011-022-03246-y.
[40] Sirinara, P., Chuersuwan, N., Pongkiatkul, P., Chanpiwat, P., & Jiamjarasrangsi, W. (2024). Quantifying the noncarcinogenic and carcinogenic risks resulting from the inhalation of PM2.5-bound metals: A multicity analysis and implications for public health. Ecotoxicology and Environmental Safety, 286(117198). doi:10.1016/j.ecoenv.2024.117198.
[41] Liu, S., Tian, H., Bai, X., Zhu, C., Wu, B., Luo, L., Hao, Y., Liu, W., Lin, S., Zhao, S., Wang, K., Liu, K., Gao, J., Zhang, Q., Zhang, K., Kan, H., Liu, Y., & Hao, J. (2021). Significant but Spatiotemporal-Heterogeneous Health Risks Caused by Airborne Exposure to Multiple Toxic Trace Elements in China. Environmental Science and Technology, 55(19), 12818–12830. doi:10.1021/acs.est.1c01775.
[42] Liu, Y., Yang, R., Chai, Y., & Wang, Y. (2025). Welding and burnishing dusts’ exposure characteristics and health risk assessment in electromechanical processing workshop: Based on oxidation potential and EPA. Building and Environment, 279. doi:10.1016/j.buildenv.2025.112971.
[43] Pourhassan, B., Beigzadeh, Z., Nasirzadeh, N., & Karimi, A. (2024). Application of Multiple Occupational Health Risk Assessment Models for Metal Fumes in Welding Process. Biological Trace Element Research, 202(3), 811–823. doi:10.1007/s12011-023-03717-w.
[44] Sellamuthu, S., Saminathan, E., Veerappan, D., & Venkatraman, Y. (2025). Sporting footpaths and toxic dust: a risk-based assessment of urban, suburban, and rural exposure. International Journal of Environmental Health Research, 35(11), 3431–3458. doi:10.1080/09603123.2025.2487630.
[45] Hao, H., Li, P., Lv, Y., Chen, W., & Ge, D. (2022). Probabilistic health risk assessment for residents exposed to potentially toxic elements near typical mining areas in China. Environmental Science and Pollution Research, 29(39), 58791–58809. doi:10.1007/s11356-022-20015-5.
[46] Huang, W., Sun, W., Zhou, C., Long, K., & Zhang, Z. (2025). Probabilistic Health Risk Assessment and Grading Benchmark Estimation of Atmospheric PM2.5-Bound Heavy Metals in China. Archives of Environmental Contamination and Toxicology, 88(3), 377–396. doi:10.1007/s00244-025-01118-9.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














