Optimisation of Extrusion Process Parameters for Producing Combined Breakfast Cereals Using Pumpkin Flour
Downloads
Downloads
[1] Hussain, A., Kausar, T., Sehar, S., Sarwar, A., Ashraf, A. H., Jamil, M. A., ... & Zerlasht, M. (2022). Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. Applied Food Research, 2(2), 100241. doi:10.1016/j.afres.2022.100241.
[2] Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Critical reviews in food science and nutrition, 56(3), 445-473. doi:10.1080/10408398.2013.779568.
[3] Leonard, W., Zhang, P., Ying, D., & Fang, Z. (2020). Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety, 19(1), 218–246. doi:10.1111/1541-4337.12514.
[4] Ding, Q. B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food engineering, 66(3), 283-289. doi:10.1016/j.jfoodeng.2004.03.019.
[5] Mesquita, C. de B., Leonel, M., & Mischan, M. M. (2013). Effects of processing on physical properties of extruded snacks with blends of sour cassava starch and flaxseed flour. Food Science and Technology, 33(3), 404–410. doi:10.1590/S0101-20612013005000073.
[6] Kumoro, A. C., Wardhani, D. H., Kusworo, T. D., Djaeni, M., Ping, T. C., & Alhanif, M. (2024). A Brief Overview of Spray Drying Technology and Its Potential in Food Applications. Journal of Human, Earth, and Future, 5(2), 279-305. doi:10.28991/HEF-2024-05-02-09.
[7] Poliszko, N., Kowalczewski, P. Ł., Rybicka, I., Kubiak, P., & Poliszko, S. (2019). The effect of pumpkin flour on quality and acoustic properties of extruded corn snacks. Journal of Consumer Protection and Food Safety, 14, 121-129. doi:10.1007/s00003-019-01216-6.
[8] Paternina‐Contreras, A. L., Andrade‐Pizarro, R. D., & Figueroa‐Flórez, J. A. (2025). Physical Modification of Starch in Plant‐Based Flours: Structural, Physicochemical, and Pasting Property Changes and Potential Applications in Baked and Extruded Products. Comprehensive Reviews in Food Science and Food Safety, 24(3), e70184. doi:10.1111/1541-4337.70184.
[9] Robin, F., & Palzer, S. (2015). Texture of breakfast cereals and extruded products. Modifying Food Texture: Novel Ingredients and Processing Techniques, 1(10), 203–235. doi:10.1016/B978-1-78242-333-1.00010-3.
[10] Oktavia, T., Christian, J. T., Kristanto, K. J., & Satria, R. S. (2024). Mobile Service Quality’s Impact on Customer Repurchase Intention in Food and Beverage Mobile Applications. HighTech and Innovation Journal, 5(3), 703-715. doi:10.28991/HIJ-2024-05-03-011.
[11] Akande, O. A., Nakimbugwe, D., & Mukisa, I. M. (2017). Optimization of extrusion conditions for the production of instant grain amaranth‐based porridge flour. Food science & nutrition, 5(6), 1205-1214. doi:10.1002/fsn3.513.
[12] Charunuch, C., Limsangouan, N., Prasert, W., & Butsuwan, P. (2011). Optimization of extrusion conditions for functional ready-to-eat breakfast cereal. Food Science and Technology Research, 17(5), 415–422. doi:10.3136/fstr.17.415.
[13] Santos, D., Pintado, M., & da Silva, J. A. L. (2022). Potential nutritional and functional improvement of extruded breakfast cereals based on incorporation of fruit and vegetable by-products-A review. Trends in Food Science & Technology, 125, 136-153. doi:10.1016/j.tifs.2022.05.010.
[14] Promsakha na Sakon Nakhon, P., Jangchud, K., Jangchud, A., & Prinyawiwatkul, W. (2017). Comparisons of physicochemical properties and antioxidant activities among pumpkin (Cucurbita moschata L.) flour and isolated starches from fresh pumpkin or flour. International Journal of Food Science and Technology, 52(11), 2436–2444. doi:10.1111/ijfs.13528.
[15] Ghendov-Mosanu, A., Netreba, N., Balan, G., Cojocari, D., Boestean, O., Bulgaru, V., Gurev, A., Popescu, L., Deseatnicova, O., Resitca, V., Socaciu, C., Pintea, A., Sanikidze, T., & Sturza, R. (2023). Effect of Bioactive Compounds from Pumpkin Powder on the Quality and Textural Properties of Shortbread Cookies. Foods, 12(21), 3907. doi:10.3390/foods12213907.
[16] Kim, C. H., Tie, J., & Ryu, G. H. (2012). Effects of moisture content on physical properties of extruded cereal flours. Journal of the Korean Society of Food Science and Nutrition, 41(11), 1603–1610. doi:10.3746/jkfn.2012.41.11.1603.
[17] Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. doi:10.1007/s13197-013-1136-2.
[18] Asaam, E. S., Adubofuor, J., Amoah, I., & Apeku, O. J. D. (2018). Functional and pasting properties of yellow maize–soya bean–pumpkin composite flours and acceptability study on their breakfast cereals. Cogent Food & Agriculture, 4(1), 1501932. doi:10.1080/23311932.2018.1501932.
[19] Ranjbar, S., & Hejazi, P. (2019). Modeling and validating Pseudomonas aeruginosa kinetic parameters based on simultaneous effect of bed temperature and moisture content using lignocellulosic substrate in packed-bed bioreactor. Food and Bioproducts Processing, 117, 51-63. doi:10.1016/j.fbp.2019.06.006.
[20] Di Cairano, M., Tolve, R., Cela, N., Sportiello, L., Scarpa, T., & Galgano, F. (2022). Functional cereal-based bakery products, breakfast cereals, and pasta products. In Functional Cereals and Cereal Foods: Properties, Functionality and Applications, 215-249. doi:10.1007/978-3-031-05611-6_9.
[21] Popovski, Z., Svetozarevic–Arsovic, M., Saiti–Musliji, Z., Chadikovski, A., Bajrami, D. A., Tripunovski, T., & Nestorovski, T. (2023). Few case studies as ideas for zero-waste from food production and processing. Genetics & Applications, 7(2), 1-12. doi:10.31383/ga.vol7iss2ga08.
[22] Alefew, Y. D., Tiruneh, A. T., & Yehuala, T. F. (2024). Optimization of extrusion conditions for development of high quality rice-lupin-pumpkin based extruded snack food. Heliyon, 10(24), e40913. doi:10.1016/j.heliyon.2024.e40913.
[23] Ortak, M., Caltinoglu, C., Sensoy, I., Karakaya, S., & Mert, B. (2017). Changes in functional properties and in vitro bioaccessibilities of β-carotene and lutein after extrusion processing. Journal of food science and technology, 54, 3543-3551. doi:10.1007/s13197-017-2812-4.
[24] Aguirre-Güitrón, L., Calderón-Santoyo, M., Bautista-Rosales, P. U., & Ragazzo-Sánchez, J. A. (2019). Application of powder formulation of Meyerozyma caribbica for postharvest control of Colletotrichum gloeosporioides in mango (Mangifera indica L.). LWT: Food Science and Technology, 113, 108271. doi:10.1016/j.lwt.2019.108271.
[25] Ozyigit, E., Eren, İ., Kumcuoglu, S., & Tavman, S. (2020). Large Amplitude Oscillatory Shear (LAOS) analysis of gluten-free cake batters: The effect of dietary fiber enrichment. Journal of Food Engineering, 275, 109867. doi:10.1016/j.jfoodeng.2019.109867.
[26] Blanco, C., Bodas, R., Morán, L., Mateo, J., Andrés, S., & Giráldez, F. J. (2018). Effect of hop (Humulus lupulus L.) inclusion in the diet for fattening lambs on animal performance, ruminal characteristics and meat quality. Food Research International, 108, 42–47. doi:10.1016/j.foodres.2018.03.030.
[27] Huang, X., Liu, H., Ma, Y., Mai, S., & Li, C. (2022). Effects of extrusion on starch molecular degradation, order–disorder structural transition and digestibility—A review. Foods, 11(16), 2538. doi:10.3390/foods11162538.
[28] Ropodi, A. I., Panagou, E. Z., & Nychas, G. J. E. (2016). Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends in Food Science and Technology, 50, 11–25. doi:10.1016/j.tifs.2016.01.011.
[29] Montemurro, M., Brasca, R., Culzoni, M. J., & Goicoechea, H. C. (2019). High-performance organized media-enhanced spectrofluorimetric determination of pirimiphos-methyl in maize. Food Chemistry, 278, 711–719. doi:10.1016/j.foodchem.2018.11.090.
[30] Zapana, F., Vidaurre-Ruiz, J., Linares-García, L., & Repo-Carrasco-Valencia, R. (2025). Exploring the Future of Extrusion with Andean Grains: Macromolecular Changes, Innovations, Future Trends and Food Security. Plant Foods for Human Nutrition, 80(1), 1. doi:10.1007/s11130-025-01294-y.
[31] Sahu, C., Patel, S., Sahu, R. K., & Sandey, K. K. (2025). Extrusion Processing: An Advanced and Novel Technology for Development of Ready-To-Eat (RTE) Products. Asian Journal of Advances in Agricultural Research, 25(4), 73–86. doi:10.9734/ajaar/2025/v25i4602.
[32] Qiu, C., Hu, H., Chen, B., Lin, Q., Ji, H., & Jin, Z. (2024). Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing. Foods, 13(22), 3677. doi:10.3390/foods13223677.
[33] Joseph, M., Guo, Q., Lindshield, B., Adedeji, A. A., & Alavi, S. (2025). Characterization of Extruded Sorghum-Soy Blends to Develop Pre-Cooked and Nutritionally Dense Fortified Blended Foods. Foods, 14(5), 779. doi:10.3390/foods14050779.
[34] Faliarizao, N., Berrios, J. D. J., & Dolan, K. D. (2024). Value-Added Processing of Food Legumes Using Extrusion Technology: A Review. Legume Science, 6(2). doi:10.1002/leg3.231.
[35] Orekoya, E. S., Oyetayo, V. O., & Adegunloye, D. V. (2025). Effects of Fermentation and Extrusion on the Amino and Fatty Acid Compositions of Unripe Plantains and Soybean Blends. Asian Journal of Biological Sciences, 18(3), 638–655. doi:10.3923/ajbs.2025.638.655.
[36] Abilmazhinov, Y., Bekeshova, G., Nesterenko, A., Dibrova, Z., Ermolaev, V., Ponomarev, E., & Vlasova, V. (2023). A Review on the Improvement of Extruded Food Processing Equipment: Extrusion Cooking in Food Processing. Food Science and Technology, 43. doi:10.5327/fst.80621.
[37] Filli, K. B. (2016). Physicochemical properties of sorghum malt and Bambara groundnut based extrudates. Journal of Food Science and Technology Nepal, 9, 55–65. doi:10.3126/jfstn.v9i0.12075.
[38] Yağcı, S., Altan, A., & Doğan, F. (2020). Effects of extrusion processing and gum content on physicochemical, microstructural and nutritional properties of fermented chickpea-based extrudates. LWT: Food Science and Technology, 124, 109150. doi:10.1016/j.lwt.2020.109150.
[39] Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science and Technology, 44(6), 1263–1271. doi:10.1111/j.1365-2621.2009.01956.x.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
