Optimizing Concrete Mix Design for Cost and Carbon Reduction Using Machine Learning
Downloads
Downloads
[1] Yu, M., Robati, M., Oldfield, P., Wiedmann, T., Crawford, R., Nezhad, A. A., & Carmichael, D. (2020). The impact of value engineering on embodied greenhouse gas emissions in the built environment: A hybrid life cycle assessment. Building and Environment, 168(10), 106452. doi:10.1016/j.buildenv.2019.106452.
[2] Belizario-Silva, F., Costa Reis, D., Carvalho, M., Leopoldo e Silva França, R., & John, V. M. (2024). Material intensity and embodied CO2 benchmark for reinforced concrete structures in Brazil. Journal of Building Engineering, 82, 108234. doi:10.1016/j.jobe.2023.108234.
[3] Dong, Y. H., Jaillon, L., Chu, P., & Poon, C. S. (2015). Comparing carbon emissions of precast and cast-in-situ construction methods - A case study of high-rise private building. Construction and Building Materials, 99, 39–53. doi:10.1016/j.conbuildmat.2015.08.145.
[4] Mehta, V. (2023). Machine learning approach for predicting concrete compressive, splitting tensile, and flexural strength with waste foundry sand. Journal of Building Engineering, 70(January), 106363. doi:10.1016/j.jobe.2023.106363.
[5] Hammond, G., Jones, C., Lowrie, F., & Tse, P. (2008). Inventory of Carbon & Energy: ICE: Sustainable Energy Research Team. Department of Mechanical Engineering, University of Bath, Bath, England.
[6] Mancke, R., Stephan, D., & Firdous, R. (2024). Case study - Sustainable concrete development: Assessing social, environmental, and performance factors of geopolymers and CEM-I concretes. Case Studies in Construction Materials, 21(July), 3448. doi:10.1016/j.cscm.2024.e03448.
[7] McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.
[8] Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., Setunge, S., & Wanijuru, D. (2020). Sustainable criterion selection framework for green building materials – An optimisation based study of fly-ash Geopolymer concrete. Sustainable Materials and Technologies, 25, 178. doi:10.1016/j.susmat.2020.e00178.
[9] Thilakarathna, P. S. M., Seo, S., Baduge, K. S. K., Lee, H., Mendis, P., & Foliente, G. (2020). Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms. Journal of Cleaner Production, 262(February), 121281. doi:10.1016/j.jclepro.2020.121281.
[10] Chi, L., Wang, M., Liu, K., Lu, S., Kan, L., Xia, X., & Huang, C. (2023). Machine learning prediction of compressive strength of concrete with resistivity modification. Materials Today Communications, 36(3), 106470. doi:10.1016/j.mtcomm.2023.106470.
[11] Chakraborty, D., Awolusi, I., & Gutierrez, L. (2021). An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete. Results in Engineering, 11. doi:10.1016/j.rineng.2021.100245.
[12] Shahrokhishahraki, M., Malekpour, M., Mirvalad, S., & Faraone, G. (2024). Machine learning predictions for optimal cement content in sustainable concrete constructions. Journal of Building Engineering, 82. doi:10.1016/j.jobe.2023.108160.
[13] Li, Y., Shen, J., Lin, H., & Li, Y. (2023). Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission. Journal of Building Engineering, 75(100), 106929. doi:10.1016/j.jobe.2023.106929.
[14] Kim, T., Tae, S., & Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 729–741. doi:10.1016/j.rser.2013.05.013.
[15] Tavares, C., & Grasley, Z. (2022). Machine learning-based mix design tools to minimize carbon footprint and cost of UHPC. Part 2: Cost and eco-efficiency density diagrams. Cleaner Materials, 4(May), 100094. doi:10.1016/j.clema.2022.100094.
[16] Alabi, S. A., Arum, C., Adewuyi, A. P., Arum, R. C., Afolayan, J. O., & Mahachi, J. (2023). Mathematical model for prediction of compressive strength of ternary blended cement concrete utilizing gene expression programming. Scientific African, 22(October), 1954. doi:10.1016/j.sciaf.2023.e01954.
[17] Md Akram Hossain, Islam, G. M. S., & Amit Mallick. (2022). Compressive Strength Prediction for Industrial Waste-Based SCC Using Artificial Neural Network. Journal of the Civil Engineering Forum, 9(January), 11–26. doi:10.22146/jcef.4094.
[18] Duan, J., Asteris, P. G., Nguyen, H., Bui, X. N., & Moayedi, H. (2021). A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Engineering with Computers, 37(4), 3329–3346. doi:10.1007/s00366-020-01003-0.
[19] Shah, S. F. A., Chen, B., Zahid, M., & Ahmad, M. R. (2022). Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Construction and Building Materials, 360(July), 129534. doi:10.1016/j.conbuildmat.2022.129534.
[20] Mai, H. V. T., Nguyen, M. H., & Ly, H. B. (2023). Development of machine learning methods to predict the compressive strength of fiber-reinforced self-compacting concrete and sensitivity analysis. Construction and Building Materials, 367 (January), 130339. doi:10.1016/j.conbuildmat.2023.130339.
[21] Li, Y., Li, H., jin, C., & Shen, J. (2022). The study of effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Construction and Building Materials, 358(July), 129435. doi:10.1016/j.conbuildmat.2022.129435.
[22] Wang, S., Xia, P., Gong, F., Zeng, Q., Chen, K., & Zhao, Y. (2024). Multi objective optimization of recycled aggregate concrete based on explainable machine learning. Journal of Cleaner Production, 445(January), 141045. doi:10.1016/j.jclepro.2024.141045.
[23] Winarno, S., & Kusumadewi, S. (2024). Application of Soft Computing to Address Uncertainty in Construction Project Management: A Systematic Literature Review. Civil Engineering Journal, 10(6), 2040-2065. doi:10.28991/CEJ-2024-010-06-020.
[24] Taffese, W. Z., & Espinosa-Leal, L. (2023). Multitarget regression models for predicting compressive strength and chloride resistance of concrete. Journal of Building Engineering, 72. doi:10.1016/j.jobe.2023.106523.
[25] Ekanayake, I. U., Meddage, D. P. P., & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16(April), 1059. doi:10.1016/j.cscm.2022.e01059.
[26] Cao, C. (2023). Prediction of concrete porosity using machine learning. Results in Engineering, 17(August), 100794. doi:10.1016/j.rineng.2022.100794.
[27] Yang, J., Zeng, B., Ni, Z., Fan, Y., Hang, Z., Wang, Y., Feng, C., & Yang, J. (2023). Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites. Construction and Building Materials, 394(March), 132179. doi:10.1016/j.conbuildmat.2023.132179.
[28] Balasooriya Arachchilage, C., Huang, G., Fan, C., & Liu, W. V. (2023). Forecasting unconfined compressive strength of calcium sulfoaluminate cement mixtures using ensemble machine learning techniques integrated with shapely-additive explanations. Construction and Building Materials, 409(October), 134083. doi:10.1016/j.conbuildmat.2023.134083.
[29] Li, Q., & Song, Z. (2023). Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. Journal of Cleaner Production, 382(November 2022), 135279. doi:10.1016/j.jclepro.2022.135279.
[30] Munir, M. J., Kazmi, S. M. S., Wu, Y. F., Lin, X., & Ahmad, M. R. (2022). Development of novel design strength model for sustainable concrete columns: A new machine learning-based approach. Journal of Cleaner Production, 357(April), 131988. doi:10.1016/j.jclepro.2022.131988.
[31] Liu, K., Zhang, L., Wang, W., Zhang, G., Xu, L., Fan, D., & Yu, R. (2023). Development of compressive strength prediction platform for concrete materials based on machine learning techniques. Journal of Building Engineering, 80(July), 107977. doi:10.1016/j.jobe.2023.107977.
[32] Zhang, T., Zhang, Y., Wang, Q., Aganyira, A. K., & Fang, Y. (2023). Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete. Journal of Building Engineering, 71(January), 106518. doi:10.1016/j.jobe.2023.106518.
[33] Alyami, M., Nassar, R. U. D., Khan, M., Hammad, A. W., Alabduljabbar, H., Nawaz, R., Fawad, M., & Gamil, Y. (2024). Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Studies in Construction Materials, 20, 2901. doi:10.1016/j.cscm.2024.e02901.
[34] Kashem, A., Karim, R., Das, P., Datta, S. D., & Alharthai, M. (2024). Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. Case Studies in Construction Materials, 20(March), 3030. doi:10.1016/j.cscm.2024.e03030.
[35] Liu, G., & Sun, B. (2023). Concrete compressive strength prediction using an explainable boosting machine model. Case Studies in Construction Materials, 18(October 2022), 1845. doi:10.1016/j.cscm.2023.e01845.
[36] Li, H., Lin, J., Zhao, D., Shi, G., Wu, H., Wei, T., Li, D., & Zhang, J. (2022). A BFRC compressive strength prediction method via kernel extreme learning machine-genetic algorithm. Construction and Building Materials, 344(April), 128076. doi:10.1016/j.conbuildmat.2022.128076.
[37] Montazerian, A., Baghban, M. H., Ramachandra, R., & Goutianos, S. (2023). A machine learning approach for assessing the compressive strength of cementitious composites reinforced by graphene derivatives. Construction and Building Materials, 409(January), 134014. doi:10.1016/j.conbuildmat.2023.134014.
[38] Kellouche, Y., Tayeh, B. A., Chetbani, Y., Zeyad, A. M., & Mostafa, S. A. (2024). Comparative study of different machine learning approaches for predicting the compressive strength of palm fuel ash concrete. Journal of Building Engineering, 88(April), 109187. doi:10.1016/j.jobe.2024.109187.
[39] Alavi, S. A., Noel, M., Moradi, F., & Layssi, H. (2024). Development of a machine learning model for on-site evaluation of concrete compressive strength by SonReb. Journal of Building Engineering, 82, 108328. doi:10.1016/j.jobe.2023.108328.
[40] Karim, R., Islam, M. H., Datta, S. D., & Kashem, A. (2024). Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Studies in Construction Materials, 20(November), 2828. doi:10.1016/j.cscm.2023.e02828.
[41] Günaydın, O., Akbaş, E., Özbeyaz, A., & Güçlüer, K. (2023). Machine learning based evaluation of concrete strength from saturated to dry by non-destructive methods. Journal of Building Engineering, 76. doi:10.1016/j.jobe.2023.107174.
[42] Wu, Y., & Zhou, Y. (2022). Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Construction and Building Materials, 330(March), 127298. doi:10.1016/j.conbuildmat.2022.127298.
[43] Rathnayaka, M., Karunasinghe, D., Gunasekara, C., Wijesundara, K., Lokuge, W., & Law, D. W. (2024). Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review. Construction and Building Materials, 419, 135519. doi:10.1016/j.conbuildmat.2024.135519.
[44] Ding, Y., Wei, W., Wang, J., Wang, Y., Shi, Y., & Mei, Z. (2023). Prediction of compressive strength and feature importance analysis of solid waste alkali-activated cementitious materials based on machine learning. Construction and Building Materials, 407(July), 133545. doi:10.1016/j.conbuildmat.2023.133545.
[45] Shen, J., Li, Y., Lin, H., Li, H., Lv, J., Feng, S., & Ci, J. (2022). Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning. Construction and Building Materials, 360(100), 129600. doi:10.1016/j.conbuildmat.2022.129600.
[46] Huo, W., Zhu, Z., Sun, H., Ma, B., & Yang, L. (2022). Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers. Journal of Cleaner Production, 380(P2), 135159. doi:10.1016/j.jclepro.2022.135159.
[47] Eftekhar Afzali, S. A., Shayanfar, M. A., Ghanooni-Bagha, M., Golafshani, E., & Ngo, T. (2024). The use of machine learning techniques to investigate the properties of metakaolin-based geopolymer concrete. Journal of Cleaner Production, 446(February), 141305. doi:10.1016/j.jclepro.2024.141305.
[48] Parhi, S. K., & Patro, S. K. (2023). Prediction of compressive strength of geopolymer concrete using a hybrid ensemble of grey wolf optimized machine learning estimators. Journal of Building Engineering, 71(March), 106521. doi:10.1016/j.jobe.2023.106521.
[49] Wang, Y., Iqtidar, A., Amin, M. N., Nazar, S., Hassan, A. M., & Ali, M. (2024). Predictive modelling of compressive strength of fly ash and ground granulated blast furnace slag based geopolymer concrete using machine learning techniques. Case Studies in Construction Materials, 20, 3130. doi:10.1016/j.cscm.2024.e03130.
[50] Ahmad, A., Ahmad, W., Aslam, F., & Joyklad, P. (2022). Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials, 16, 840. doi:10.1016/j.cscm.2021.e00840.
[51] Pal, A., Ahmed, K. S., Hossain, F. Z., & Alam, M. S. (2023). Machine learning models for predicting compressive strength of fiber-reinforced concrete containing waste rubber and recycled aggregate. Journal of Cleaner Production, 423(May), 138673. doi:10.1016/j.jclepro.2023.138673.
[52] Liu, K., Zheng, J., Dong, S., Xie, W., & Zhang, X. (2023). Mixture optimization of mechanical, economical, and environmental objectives for sustainable recycled aggregate concrete based on machine learning and metaheuristic algorithms. Journal of Building Engineering, 63. doi:10.1016/j.jobe.2022.105570.
[53] Yang, S., Sun, J., & Zhifeng, X. (2024). Prediction on compressive strength of recycled aggregate self-compacting concrete by machine learning method. Journal of Building Engineering, 88. doi:10.1016/j.jobe.2024.109055.
[54] Quan Tran, V., Quoc Dang, V., & Si Ho, L. (2022). Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Construction and Building Materials, 323(January), 126578. doi:10.1016/j.conbuildmat.2022.126578.
[55] Huang, P., Dai, K., & Yu, X. (2023). Machine learning approach for investigating compressive strength of self-compacting concrete containing supplementary cementitious materials and recycled aggregate. Journal of Building Engineering, 79(July), 107904. doi:10.1016/j.jobe.2023.107904.
[56] Mahmood, M. S., Elahi, A., Zaid, O., Alashker, Y., Șerbănoiu, A. A., Grădinaru, C. M., Ullah, K., & Ali, T. (2023). Enhancing compressive strength prediction in self-compacting concrete using machine learning and deep learning techniques with incorporation of rice husk ash and marble powder. Case Studies in Construction Materials, 19(September), e02557. doi:10.1016/j.cscm.2023.e02557.
[57] de-Prado-Gil, J., Palencia, C., Silva-Monteiro, N., & Martínez-García, R. (2022). To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Studies in Construction Materials, 16(April), 1046. doi:10.1016/j.cscm.2022.e01046.
[58] Yuan, Y., Yang, M., Shang, X., Xiong, Y., & Zhang, Y. (2023). Predicting the compressive strength of UHPC with coarse aggregates in the context of machine learning. Case Studies in Construction Materials, 19(August), 2627. doi:10.1016/j.cscm.2023.e02627.
[59] Nagaraju, T. V., Mantena, S., Azab, M., Alisha, S. S., El Hachem, C., Adamu, M., & Rama Murthy, P. S. (2023). Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches. Results in Engineering, 17(February), 100973. doi:10.1016/j.rineng.2023.100973.
[60] Das, P., & Kashem, A. (2024). Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations. Case Studies in Construction Materials, 20(August), 2723. doi:10.1016/j.cscm.2023.e02723.
[61] Zhang, J., Niu, W., Yang, Y., Hou, D., & Dong, B. (2022). Machine learning prediction models for compressive strength of calcined sludge-cement composites. Construction and Building Materials, 346(July), 128442. doi:10.1016/j.conbuildmat.2022.128442.
[62] El Khessaimi, Y., El Hafiane, Y., Smith, A., Peyratout, C., Tamine, K., Adly, S., & Barkatou, M. (2023). Machine learning-based prediction of compressive strength for limestone calcined clay cements. Journal of Building Engineering, 76(March), 1–25. doi:10.1016/j.jobe.2023.107062.
[63] Alyami, M., Khan, M., Fawad, M., Nawaz, R., Hammad, A. W. A., Najeh, T., & Gamil, Y. (2024). Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Studies in Construction Materials, 20, 2728. doi:10.1016/j.cscm.2023.e02728.
[64] Alyousef, R., Rehman, M. F., Khan, M., Fawad, M., Khan, A. U., Hassan, A. M., & Ghamry, N. A. (2023). Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Case Studies in Construction Materials, 19(June), 2418. doi:10.1016/j.cscm.2023.e02418.
[65] Sun, Y., & Lee, H. S. (2024). An interpretable probabilistic machine learning model for forecasting compressive strength of oil palm shell-based lightweight aggregate concrete containing fly ash or silica fume. Construction and Building Materials, 426(February), 136176. doi:10.1016/j.conbuildmat.2024.136176.
[66] Çalışkan, A., Demirhan, S., & Tekin, R. (2022). Comparison of different machine learning methods for estimating compressive strength of mortars. Construction and Building Materials, 335. doi:10.1016/j.conbuildmat.2022.127490.
[67] Khan, M. I., & Abbas, Y. M. (2023). Intelligent data-driven compressive strength prediction and optimization of reactive powder concrete using multiple ensemble-based machine learning approach. Construction and Building Materials, 404(August), 133148. doi:10.1016/j.conbuildmat.2023.133148.
[68] Maherian, M. F., Baran, S., Bicakci, S. N., Toreyin, B. U., & Atahan, H. N. (2023). Machine learning-based compressive strength estimation in nano silica-modified concrete. Construction and Building Materials, 408(October), 133684. doi:10.1016/j.conbuildmat.2023.133684.
[69] Luo, X., Li, Y., Lin, H., Li, H., Shen, J., Pan, B., Bi, W., & Zhang, W. (2023). Research on predicting compressive strength of magnesium silicate hydrate cement based on machine learning. Construction and Building Materials, 406(July), 133412. doi:10.1016/j.conbuildmat.2023.133412.
[70] Khan, M. A., Aslam, F., Javed, M. F., Alabduljabbar, H., & Deifalla, A. F. (2022). New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms. Journal of Cleaner Production, 350(August), 131364. doi:10.1016/j.jclepro.2022.131364.
[71] Mahjoubi, S., Barhemat, R., Guo, P., Meng, W., & Bao, Y. (2021). Prediction and multi-objective optimization of mechanical, economical, and environmental properties for strain-hardening cementitious composites (SHCC) based on automated machine learning and metaheuristic algorithms. Journal of Cleaner Production, 329(August), 129665. doi:10.1016/j.jclepro.2021.129665.
[72] Sun, Z., Li, Y., Li, Y., Su, L., & He, W. (2024). Investigation on compressive strength of coral aggregate concrete: Hybrid machine learning models and experimental validation. Journal of Building Engineering, 82(December), 108220. doi:10.1016/j.jobe.2023.108220.
[73] Han, S. H., Khayat, K. H., Park, S., & Yoon, J. (2024). Machine learning-based approach for optimizing mixture proportion of recycled plastic aggregate concrete considering compressive strength, dry density, and production cost. Journal of Building Engineering, 83, 108393. doi:10.1016/j.jobe.2023.108393.
[74] Luo, X., Li, Y., Wang, Q., Mu, J., & Liu, Y. (2024). Machine learning based modeling for predicting the compressive strength of solid waste material-incorporated Magnesium Phosphate Cement. Journal of Cleaner Production, 442(January), 141172. doi:10.1016/j.jclepro.2024.141172.
[75] Collepardi, M. (1998). Admixtures used to enhance placing characteristics of concrete. Cement and Concrete Composites, 20(2–3), 103–112. doi:10.1016/s0958-9465(98)00071-7.
[76] Yudhistira, A. T., Nugroho, A. S. B., Satyarno, I., and T. N. Handayani. (2024). Analyzing Construction Stakeholder Perceptions in Indonesia: Analytic Hierarchy Process Approach for Quality, Cost, and Carbon Emission Assessment, 1-12.
[77] Xi, B., Zhang, N., Duan, H., He, J., Song, G., Li, H., & Shi, X. (2023). Optimization of rice husk ash concrete design towards economic and environmental assessment. Environmental Impact Assessment Review, 103(5), 107229. doi:10.1016/j.eiar.2023.107229.
[78] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.
[79] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-international Conference on Neural Networks, 4, 1942-1948. doi:10.1109/ICNN.1995.488968.
[80] Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), 69-73. doi:10.1109/ICEC.1998.699146.
[81] Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. doi:10.1109/4235.985692.
[82] Pristyanto, Y., Mukarabiman, Z., & Nugraha, A. F. (2023). Extreme Gradient Boosting Algorithm to Improve Machine Learning Model Performance on Multiclass Imbalanced Dataset. International Journal on Informatics Visualization, 7(3), 710–715. doi:10.30630/joiv.7.3.1102.
[83] Poli, R., Kennedy, J., & Blackwell, T. (2007). Quantification & Assessment of the chemical form of residual gadolinium in the brain.pdf. Swarm Intell, 1, 33–57. doi:10.1007/s11721-007-0002-0.
[84] Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons, New York, United States.
[85] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. doi:10.1145/3292500.3330701.
[86] Jones, C. (2024). ICE Database - Embodied Carbon Model of Cement, Mortar and Concrete V1.2. Circular Ecology. Available online: https://circularecology.com/embodied-carbon-footprint-database.html (accessed on May 2024).
[87] Sandanayake, M., Lokuge, W., Zhang, G., Setunge, S., & Thushar, Q. (2018). Greenhouse gas emissions during timber and concrete building construction —A scenario based comparative case study. Sustainable Cities and Society, 38(8), 91–97. doi:10.1016/j.scs.2017.12.017.
[88] Sandanayake, M., Zhang, G., Setunge, S., Luo, W., & Li, C. Q. (2017). Estimation and comparison of environmental emissions and impacts at foundation and structure construction stages of a building – A case study. Journal of Cleaner Production, 151, 319–329. doi:10.1016/j.jclepro.2017.03.041.
[89] Skibicki, S. (2017). Optimization of Cost of Building with Concrete Slabs Based on the Maturity Method. IOP Conference Series: Materials Science and Engineering, 245(2), 022061. doi:10.1088/1757-899X/245/2/022061.
[90] Yudhistira, A. T., Satyarno, I., Nugroho, A. S., & Handayani, T. N. (2024). Effect of Construction Delays and the Preventive Role of Concrete Works Optimization: Systematic Literature Review. TEM Journal, 13(2), 1203–1217. doi:10.18421/TEM132-34.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
