Multifactorial Analysis for the Development of Gluten-Free Sea Buckthorn Snacks
Downloads
Downloads
[1] Filli, K. B. (2016). Physicochemical properties of sorghum malt and Bambara groundnut based extrudates. Journal of Food Science and Technology Nepal, 9, 55–65. doi:10.3126/jfstn.v9i0.12075.
[2] Kraevskaya, S., & Stetsenko, N. (2018). Formation of the domestic market of gluten-free food products. Products and Markets, 4, 36–46. doi:10.31617/tr.knute.2018(28)03.
[3] Kondratieva, E. I., & Yankina, G. N. (2011). HLA markers of celiac disease and their effect on the course of the disease. Questions of Children’s Dietetics, 9(2), 73–74.
[4] Tonutti, E., & Bizzaro, N. (2014). Diagnosis and classification of celiac disease and gluten sensitivity. Autoimmunity Reviews, 13(4–5), 472–476. doi:10.1016/j.autrev.2014.01.043.
[5] Merenkova, S. P., Potoroko, I. Y., Kontanistova, Y., & Fomina, T. Y. (2020). Approaches in food production technology for dietary therapy of people with gluten enteropathy. Bulletin of the South Ural State University. Series: Food and Biotechnology, 8(1), 81–93. doi:10.14529/food200110.
[6] Alexander, Reinaldo, M. A. (2017). ( Celiac Disease ) Celiac Disease. Management, 94(12), 1–3. doi:10.1056/nejmcp1113994.
[7] Kamel, M. A.-A. (2020). Preparation of Gluten-Free Corn Crackers Supplemented with Some Legume Flours. Journal of Advanced Research in Food Science and Nutrition, 03(01), 42–49. doi:10.24321/2582.3892.202006.
[8] Volta, U., Caio, G., Stanghellini, V., & De Giorgio, R. (2014). The changing clinical profile of celiac disease: A 15-year experience (1998-2012) in an Italian referral center. BMC Gastroenterology, 14(1), 194. doi:10.1186/s12876-014-0194-x.
[9] Volta, U., Caio, G., Tovoli, F., & De Giorgio, R. (2013). Non-celiac gluten sensitivity: Questions still to be answered despite increasing awareness. Cellular and Molecular Immunology, 10(5), 383–392. doi:10.1038/cmi.2013.28.
[10] De Lorgeril, M., & Salen, P. (2014). Gluten and wheat intolerance today: Are modern wheat strains involved? International Journal of Food Sciences and Nutrition, 65(5), 577–581. doi:10.3109/09637486.2014.886185.
[11] van den Broeck, H. C., de Jong, H. C., Salentijn, E. M. J., Dekking, L., Bosch, D., Hamer, R. J., Gilissen, L. J. W. J., van der Meer, I. M., & Smulders, M. J. M. (2010). Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: Wheat breeding may have contributed to increased prevalence of celiac disease. Theoretical and Applied Genetics, 121(8), 1527–1539. doi:10.1007/s00122-010-1408-4.
[12] Corazza, G. R., Andreani, M. L., Biagi, F., Corrao, G., Pretolani, S., Giulianelli, G., Ghironzi, G., & Gasbarrini, G. (1997). The smaller size of the “coeliac iceberg” in adults. Scandinavian Journal of Gastroenterology, 32(9), 917–919. doi:10.3109/00365529709011202.
[13] Ivarsson, A., Persson, L. Å., Juto, P., Peltonen, M., Suhr, O., & Hernell, O. (1999). High prevalence of undiagnosed coeliac disease in adults: A Swedish population-based study. Journal of Internal Medicine, 245(1), 63–68. doi:10.1046/j.1365-2796.1999.00403.x.
[14] Riestra, S., Fernández-Rodriguez, E., Rodrigo, L., Garcia, S., & Ocio, G. (2000). Prevalence of coeliac disease in the general population of Northern Spain: Strategies of serologic screening. Scandinavian Journal of Gastroenterology, 35(4), 398–402. doi:10.1080/003655200750023967.
[15] Volta, U., Bellentani, S., Bianchi, F. B., Brandi, G., De Franceschi, L., Miglioli, L., Granito, A., Balli, F., & Tiribelli, C. (2001). High prevalence of celiac disease in Italian general population. Digestive Diseases and Sciences, 46(7), 1500–1505. doi:10.1023/A:1010648122797.
[16] Mustalahti, K., Catassi, C., Reunanen, A., Fabiani, E., Heier, M., McMillan, S., Murray, L., Metzger, M. H., Gasparin, M., Bravi, E., & Mki, M. (2010). The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Annals of Medicine, 42(8), 587–595. doi:10.3109/07853890.2010.505931.
[17] Rubio-Tapia, A., Ludvigsson, J. F., Brantner, T. L., Murray, J. A., & Everhart, J. E. (2012). The prevalence of celiac disease in the United States. American Journal of Gastroenterology, 107(10), 1538–1544. doi:10.1038/ajg.2012.219.
[18] Singh, P., Arora, S., Singh, A., Strand, T. A., & Makharia, G. K. (2016). Prevalence of celiac disease in Asia: A systematic review and meta-analysis. Journal of Gastroenterology and Hepatology (Australia), 31(6), 1095–1101. doi:10.1111/jgh.13270.
[19] Bach, J. F. (2018). The hygiene hypothesis in autoimmunity: The role of pathogens and commensals. Nature Reviews Immunology, 18(2), 105–120. doi:10.1038/nri.2017.111.
[20] Gatti, S., Rubio-Tapia, A., Makharia, G., & Catassi, C. (2024). Patient and Community Health Global Burden in a World with More Celiac Disease. Gastroenterology, 167(1), 23–33. doi:10.1053/j.gastro.2024.01.035.
[21] Revnova, M. O., & Shapovalova, N. S. (2015). Celiac disease as an autoimmune disease. Questions of Children's Dietetics, 13(3), 33–39.
[22] Rosell, C. M., Barro, F., Sousa, C., & Mena, M. C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. Journal of Cereal Science, 59(3), 354–364. doi:10.1016/j.jcs.2013.10.001.
[23] Comino, I., Moreno, M. de L., Real, A., Rodríguez-Herrera, A., Barro, F., & Sousa, C. (2013). The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients, 5(10), 4250–4268. doi:10.3390/nu5104250.
[24] Anton, A. A., & Artfield, S. D. (2008). Hydrocolloids in gluten-free breads: A review. International Journal of Food Sciences and Nutrition, 59(1), 11–23. doi:10.1080/09637480701625630.
[25] Caio, G., Volta, U., Sapone, A., Leffler, D. A., De Giorgio, R., Catassi, C., & Fasano, A. (2019). Celiac disease: A comprehensive current review. BMC Medicine, 17(1), 142. doi:10.1186/s12916-019-1380-z.
[26] Kulai, T., & Rashid, M. (2014). Assessment of nutritional adequacy of packaged gluten-free food products. Canadian Journal of Dietetic Practice and Research, 75(4), 186–190. doi:10.3148/cjdpr-2014-022.
[27] Conte, P., Del Caro, A., Balestra, F., Piga, A., & Fadda, C. (2018). Bee pollen as a functional ingredient in gluten-free bread: A physical-chemical, technological and sensory approach. LWT (Food Science and Technology), 90, 1–7. doi:10.1016/j.lwt.2017.12.002.
[28] Hettiarachchy, N. S., Ju, Z. Y., Siebenmorgen, T., & Sharp, R. N. (2000). Rice: Production, processing, and utilization. Handbook of Cereal Science and Technology, Revised and Expanded, 203-221.
[29] Delcour, J. A. & Hoseney, R. C. (2010). Principles of cereal science and technology. 3rd Edition. American Association of Cereal Chemists, Minnesota, United States.
[30] Okafor, G. I., & Usman, G. O. (2014). Production and evaluation of breakfast cereals from blends of African yam bean (Sphenostylis stenocarpa), maize (Zea mays) and defatted coconut (Cocus nucifera). Journal of Food Processing and Preservation, 38(3), 1037–1043. doi:10.1111/jfpp.12060.
[31] Arendt, E. K., & Zannini, E. (2013). Cereal Grains for the Food and Beverage Industries. In Cereal Grains for the Food and Beverage Industries. Woodhead Publishing Ltd. doi:10.1533/9780857098924.
[32] Sawant, A. A., Thakor, N. J., Swami, S. B., Divate, A. D., & Vidyapeeth, B. S. K. K. (2013). Physical and sensory characteristics of Ready-To-Eat food prepared from finger millet based composite mixer by extrusion. Agricultural Engineering International: CIGR Journal, 15(1), 100–105.
[33] Saturni, L., Ferretti, G., & Bacchetti, T. (2010). The gluten-free diet: Safety and nutritional quality. Nutrients, 2(1), 16–34. doi:10.3390/nu2010016.
[34] Kumar, K. (2018). Role of Gluten-Free Functional Foods in the Management of Celiac Disease. EC Nutrition, 13(12), 742–743.
[35] Mielmann, A., & Brunner, T. A. (2019). Consumers’ snack choices: current factors contributing to obesity. British Food Journal, 121(2), 347–358. doi:10.1108/BFJ-05-2018-0309.
[36] Warde, A., & Yates, L. (2017). Understanding Eating Events: Snacks and Meal Patterns in Great Britain. Food, Culture and Society, 20(1), 15–36. doi:10.1080/15528014.2016.1243763.
[37] Perdon, A. A., Schonauer, S. L., & Poutanen, K. S. (2020). Breakfast Cereals and How They Are Made: Raw Materials, Processing, and Production. Elsevier Inc. doi:10.1016/C2017-0-04647-5.
[38] Tunde Olorunsogo, S., & Adenike Adejumo, B. (2023). Development and Optimization of Flakes from Some Selected Locally Available Food Materials. Food Processing and Preservation. IntechOpen, 1-22. doi:10.5772/intechopen.109820.
[39] Ciudad-Mulero, M., Vega, E. N., García-Herrera, P., Fernández-Tomé, S., Pedrosa, M. M., Arribas, C., Berrios, J. D. J., Pan, J., Leal, P., Cámara, M., Fernández-Ruiz, V., & Morales, P. (2025). New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties. Molecules, 30(6), 1225. doi:10.3390/molecules30061225.
[40] Chuechomsuk, S., Bunchom, N., Korkerd, S., Kalhoro, M. S., Thumthanaruk, B., Rungsardthong, V., & Lamsal, B. (2024). Product Development of Nutritious Rice Based Gluten-Free Snacks from Different Formulation of Rice Varieties by Extrusion and their Physical, Physicochemical and Sensory Evaluation. Applied Science and Engineering Progress, 17(3), 34–42. doi:10.14416/j.asep.2024.06.009.
[41] Carboni, A. D., Puppo, M. C., & Ferrero, C. (2024). Gluten-free lentil cakes with optimal technological and nutritional characteristics. Journal of the Science of Food and Agriculture, 104(10), 6298–6310. doi:10.1002/jsfa.13459.
[42] Lisiecka, K., Wójtowicz, A., Bouasla, A., & Kasprzak, K. (2021). Design of new gluten-free extruded rice snack products supplemented with fresh vegetable pulps: The effect on processing and functional properties. International Agrophysics, 35(1), 41–60. doi:10.31545/INTAGR/132121.
[43] Fiorda, F. A., Soares, M. S., da Silva, F. A., de Moura, C. M. A., & Grossmann, M. V. E. (2015). Physical quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. LWT (Food Science and Technology), 62(2), 1112–1119. doi:10.1016/j.lwt.2015.02.030.
[44] Ferreira, S. L. C., Silva Junior, M. M., Felix, C. S. A., da Silva, D. L. F., Santos, A. S., Santos Neto, J. H., de Souza, C. T., Cruz Junior, R. A., & Souza, A. S. (2019). Multivariate optimization techniques in food analysis – A review. Food Chemistry, 273, 3–8. doi:10.1016/j.foodchem.2017.11.114.
[45] Khajeh, M., Akbari Moghaddam, A. R., & Sanchooli, E. (2010). Application of Doehlert design in the Optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Analytical Methods, 3(3), 133–137. doi:10.1007/s12161-009-9099-7.
[46] Putra, R. P., Aisyah, S. I., Kurniatin, P. A., & Nurcholis, W. (2024). Optimization of Solvent Sonication-Maceration for Enhancing Total Phenolic Content and Antioxidant Activity of Portulaca oleracea L. Extract Using the Simplex Centroid Design Method. Tropical Journal of Natural Product Research, 8(3), 6558–6562. doi:10.26538/tjnpr/v8i3.12.
[47] Handa, C. L., De Lima, F. S., Guelfi, M. F. G., Georgetti, S. R., & Ida, E. I. (2016). Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design. Food Chemistry, 197(A), 175–184. doi:10.1016/j.foodchem.2015.10.124.
[48] Sifaoui, I., Mecha, E., Silva, A., Chammem, N., Mejri, M., Abderabba, M., & Bronze, M. R. (2016). Optimized Extraction of Antioxidants from Olive Leaves Using Augmented Simplex Centroid Design. Analytical Letters, 49(9), 1323–1333. doi:10.1080/00032719.2015.1104320.
[49] Borges, C. N., Bruns, R. E., Almeida, A. A., & Scarminio, I. S. (2007). Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis. Analytica Chimica Acta, 595(1-2 SPEC. ISS.), 28–37. doi:10.1016/j.aca.2007.02.067.
[50] Nano, R. M. W., Bruns, R. E., Ferreira, S. L. C., Baccan, N., & Cadore, S. (2009). Statistical mixture design development of digestion methods for Oyster tissue using inductively coupled plasma optical emission spectrometry for the determination of metallic ions. Talanta, 80(2), 559–564. doi:10.1016/j.talanta.2009.07.025.
[51] Bezerra, M. A., Castro, J. T., Macedo, R. C., & da Silva, D. G. (2010). Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling. Analytica Chimica Acta, 670(1–2), 33–38. doi:10.1016/j.aca.2010.04.063.
[52] da Silva Oliveira, W., de Souza, T. C. L., Padula, M., & Godoy, H. T. (2017). Development of an Extraction Method Using Mixture Design for the Evaluation of Migration of Non-target Compounds and Dibutyl Phthalate from Baby Bottles. Food Analytical Methods, 10(7), 2619–2628. doi:10.1007/s12161-017-0808-3.
[53] Sultanova, M., Abdrakhmanov, K., Nurysh, A., Saduakas, A., & Akzhanov, N. (2022). Revealing the Influence of Technological Parameters on the Process of Extraction from Walnut Shell. Eastern-European Journal of Enterprise Technologies, 4(11–118), 35–42. doi:10.15587/1729-4061.2022.261473.
[54] Sultanova, M., Dalabayev, A., Saduakas, A., Nurysh, A., Akzhanov, N., & Yakiyayeva, M. (2023). The potential of non-traditional walnut shells waste for the production of antioxidant reach extracts intended for the food industry. Potravinarstvo Slovak Journal of Food Sciences, 17, 391–404. doi:10.5219/1862.
[55] Singh, B., Oberoi, S., & Kaur, A. (2024). Phenolic compounds in sea buckthorn (Hippophae rhamnoides L.) and their health-promoting activities: a review. International Journal of Food Science and Technology, 59(9), 6642–6658. doi:10.1111/ijfs.17143.
[56] Chib, A., Gupta, N., Bhat, A., Anjum, N., & Yadav, G. (2020). Role of antioxidants in food. International Journal of Chemical Studies, 8(1), 2354–2361. doi:10.22271/chemi.2020.v8.i1aj.8621.
[57] El Khoury, D., Balfour-Ducharme, S., & Joye, I. J. (2018). A review on the gluten-free diet: Technological and nutritional challenges. Nutrients, 10(10), 1410. doi:10.3390/nu10101410.
[58] Gasparre, N., & Rosell, C. M. (2023). Alternative proteins for gluten-free products. In Future Proteins: Sources, Processing, Applications and the Bioeconomy, Academic Press, 337–357. doi:10.1016/B978-0-323-91739-1.00016-7.
[59] Zhu, F. (2021). Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science and Technology, 110, 155–167. doi:10.1016/j.tifs.2021.01.081.
[60] Reis, S. F., & Abu-Ghannam, N. (2014). Antioxidant capacity, arabinoxylans content and invitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT (Food Science and Technology), 55(1), 269–277. doi:10.1016/j.lwt.2013.09.004.
[61] Capriles, V. D., Conti-Silva, A. C., & Gomes Arêas, J. A. (2021). Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. Food Bioscience, 43, 101263. doi:10.1016/j.fbio.2021.101263.
[62] Cayres, C. A., Ascheri, J. L. R., Couto, M. A. P. G., & Almeida, E. L. (2021). Impact of pregelatinized composite flour on nutritional and functional properties of gluten-free cereal-based cake premixes. Journal of Food Measurement and Characterization, 15(1), 769–781. doi:10.1007/s11694-020-00678-9.
[63] Azarbad, H. R., Mazaheri Tehrani, M., & Rashidi, H. (2019). Optimization of gluten-free bread formulation using sorghum, rice, and millet flour by D-optimal mixture design approach. Journal of Agricultural Science and Technology, 21(1), 101–115.
[64] Wronkowska, M., Haros, M., & Soral-Śmietana, M. (2013). Effect of Starch Substitution by Buckwheat Flour on Gluten-Free Bread Quality. Food and Bioprocess Technology, 6(7), 1820–1827. doi:10.1007/s11947-012-0839-0.
[65] Nadeesha Dilrukshi, H. N., Torrico, D. D., Brennan, M. A., & Brennan, C. S. (2022). Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chemistry, 389, 133107. doi:10.1016/j.foodchem.2022.133107.
[66] Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, 56(3), 445–473. doi:10.1080/10408398.2013.779568.
[67] Delgado-Licon, E., Ayala, A. L. M., Rocha-Guzman, N. E., Gallegos-Infante, J. A., Atienzo-Lazos, M., Drzewiecki, J., Martnez-Snchez, C. E., & Gorinstein, S. (2009). Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. International Journal of Food Sciences and Nutrition, 60(6), 522–532. doi:10.1080/09637480801987666.
[68] Zhakatayeva, A., Iztayev, A., Muldabekova, B., Yakiyayeva, M., & Hrivna, L. (2020). Scientific security assessment of safety risk of raw sugar products. Periodico Tche Quimica, 17(34), 352–368. doi:10.52571/ptq.v17.n34.2020.369_p34_pgs_352_368.pdf.
[69] Liu, Y., Liu, M., Huang, S., & Zhang, Z. (2021). Optimisation of the extrusion process through a response surface methodology for improvement of the physical properties and nutritional components of whole black-grained wheat flour. Foods, 10(2), 1–27. doi:10.3390/foods10020437.
[70] Manolache, F. A., Macri, A., Bilbie, C., Maior-Dobrea, I., Voicilă, L., & Smeu, I. (2022). The effect of storage time on the physico-chemical, microbiological, and sensory properties of gluten-free snacks containing textured fruit juice. Journal of Agroalimentary Processes & Technologies, 28(1). 11-19.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
