Optimization of Water Resources Management for Widening the Green Area
Downloads
This study aims to develop an integrated optimization model for water resources management in the Jatigede Reservoir by incorporating the influence of land cover dynamics on hydrological processes. The objectives are to improve the reliability of water allocation for irrigation, raw water supply, and hydropower while simultaneously enhancing ecological sustainability through land use planning. The methodology combines hydrological analysis using rainfall–runoff and dependable flow estimation, spatial assessment of land cover change based on the satellite imagery, and optimization modeling with multi-objective programming. Simulation scenarios were constructed to represent the existing conditions, spatial planning policies (RTRW), and optimized land cover management. The findings reveal that incorporating land cover factors into the optimization model increases water supply reliability by 5–10% and reduces the risk of sedimentation, thereby extending the effective lifetime of the reservoir. Moreover, the optimization scenario demonstrates that expansion of dry land forest cover contributes positively to water regulation, although it requires trade-offs with plantation forest areas. The novelty of this research lies in bridging the gap between technical water allocation models and spatial ecological considerations, offering a more comprehensive decision-support tool. This improvement provides valuable insights for policymakers in integrating reservoir operation strategies with land use planning to achieve sustainable water resources management.
Downloads
[1] Amitaba, I. W., Juwono, P. T., Limantara, L. M., & Asmaranto, R. (2024). Real Time Operation Simulation Model with Early Release Reservoir Storage. Journal of Human, Earth, and Future, 5(4), 574–590. doi:10.28991/HEF-2024-05-04-03.
[2] Asmelita., Limantara, L. M., Bisri, M., Soetopo, W., & Farni, I. (2024). Rice Self-Sufficiency and Optimization of Irrigation by Using System Dynamic. Civil Engineering Journal, 10(2), 489–501. doi:10.28991/cej-2024-010-02-010.
[3] Huynh, N. N. T., Garambois, P. A., Renard, B., Colleoni, F., Monnier, J., & Roux, H. (2025). A distributed hybrid physics-AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling. Hydrology and Earth System Sciences, 29(15), 3589–3613. doi:10.5194/hess-29-3589-2025.
[4] Yanti, D. (2018). Optimalisasi penggunnaan lahan DAS Sumani dengan linear programming (Optimization of land using in Sumani Watershed by using linear programming. Informatika Pengairan, 27(2), 101–110.
[5] Imron, F., Murtiningrum, & Arif, S. S. (2022). Analisis kesiapan modernisasi irigasi dan optimasi alokasi air irigasi pada daerah irigasi Belitang (Analysis of the preparation of irrigation modernization and optimization of irrigation water allocation in Belitang irrigation area). AgriTECH, 42, 329–341.
[6] Waspodo, Roh, Santoso, B., Komariah, S., & Dewi, Vita, Ayu, K. (2019). Optimisasi Alokasi Sumberdaya Air di DAS Cicatih, Kabupaten Sukabumi, Jawa Barat. JTEAP (Jurnal Keteknikan Pertanian), 7(3), 179–184.
[7] Schuster, R., Hanson, J. O., Strimas-Mackey, M., & Bennett, J. R. (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 2020(5), 1–10. doi:10.7717/peerj.9258.
[8] Vivekanandan, N., Viswanathan, K., & Gupta, S. (2009). Optimization of cropping pattern using goal programming approach. OPSEARCH, 46(3), 259–274. doi:10.1007/s12597-009-0017-y.
[9] Difallah, W., Benahmed, K., Draoui, B., & Bounaama, F. (2017). Linear Optimization Model for Efficient Use of Irrigation Water. International Journal of Agronomy, 2017, 1. doi:10.1155/2017/5353648.
[10] Bilal, E. A. (2020). Optimization of Irrigation Systems Using Linear Programming. School of Science and Engineering, Al Akhawayn University in Ifrane, Morocco.
[11] Juwono, P. T., Limantara, L. M., & Rosiadi, F. (2018). Optimization of irrigation cropping pattern by using linear programming: Case study on irrigation area of Parsanga, Madura Island, Indonesia. Journal of Water and Land Development, 39(1), 51–60. doi:10.2478/jwld-2018-0058.
[12] Bachtiar, S., Limantara, L. M., Sholichin, M., & Soetopo, W. (2023). Optimization of Integrated Reservoir for Supporting the Raw Water Supply. Civil Engineering Journal, 9(4), 860–872. doi:10.28991/CEJ-2023-09-04-07.
[13] Tama, D. R., Limantara, L. M., Suhartanto, E., & Devia, Y. P. (2023). The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge. Civil Engineering Journal, 9(7), 1768–1778. doi:10.28991/CEJ-2023-09-07-015.
[14] Li, M., Xu, Y., Fu, Q., Singh, V. P., Liu, D., & Li, T. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586. doi:10.1016/j.jhydrol.2020.124888.
[15] Hidayat, S. S., Hidayat, A. K., & Irawan, P. (2021). Membangun Aplikasi Program Optimasi Pengelolaan Air Irigasi Dengan Visual Basic of Aplplication (VBA) (To build the application of irrigation water resources optimization program by using Visual Basic of Application (VBA) (Studi Kasus Pada Daerah Irigasi Bendung Muhara). Akselerasi : Jurnal Ilmiah Teknik Sipil, 2(2), 36 – 39. doi:10.37058/aks.v2i2.2763.
[16] Andika, N., Wongso, P., Rohmat, F. I. W., Wulandari, S., Fadhil, A., Rosi, R., & Burnama, N. S. (2025). Machine learning-based hydrograph modeling with LSTM: A case study in the Jatigede Reservoir Catchment, Indonesia. Results in Earth Sciences, 3, 100090. doi:10.1016/j.rines.2025.100090.
[17] Kamanda, A., Anggraheni, E., & Kuncoro, D. A. (2024). Analysis of Land Cover Changes Impact on Design Flood Estimation Case study: Upper Cimanuk Watershed in Garut City. IOP Conference Series: Earth and Environmental Science, 1343(1), 012015. doi:10.1088/1755-1315/1343/1/012015.
[18] Ridwansyah, I., Yulianti, M., Apip, Onodera, S., Shimizu, Y., Wibowo, H., & Fakhrudin, M. (2020). The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology, 21(3), 487–498. doi:10.1007/s10201-020-00629-9.
[19] Xu, J., Qiao, J., Sun, Q., & Shen, K. (2025). A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty. Water (Switzerland), 17(15). doi:10.3390/w17152324.
[20] Rivera-Fernandez, A. S., Cotrina-Sanchez, A., Salas López, R., Zabaleta-Santisteban, J. A., Rios, N., Medina-Medina, A. J., Tuesta-Trauco, K. M., Sánchez-Vega, J. A., Silva-Melendez, T. B., Oliva-Cruz, M., Portocarrero, C., & Barboza, E. (2025). Spatiotemporal Land Cover Change and Future Hydrological Impacts Under Climate Scenarios in the Amazonian Andes: A Case Study of the Utcubamba River Basin. Land, 14(6). doi:10.3390/land14061234.
[21] Abdi, E., Taghi Sattari, M., Milewski, A., & Ibrahim, O. R. (2025). Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns. Water (Switzerland), 17(11). doi:10.3390/w17111660.
[22] Su, C., Wang, P., Yuan, W., Cheng, C., Zhang, T., Yan, D., & Wu, Z. (2022). A MILP based optimization model for reservoir flood control operation considering spillway gate scheduling. Journal of Hydrology, 613, 128483. doi:10.1016/j.jhydrol.2022.128483.
[23] English, M. J., Solomon, K. H., & Huffman, G. J. (2002). A Paradigm Shift in Irrigation Management. Perspectives in Civil Engineering: Commemorating the 150th Anniversary of the American Society of Civil Engineers, 28(5), 89–99. doi:10.1061/(asce)0733-9437(2002)128:5(267).
[24] Soetopo, W. (2007). Penerapan model Sinus-Perkalian pada rumusan fungsi kinerja irigasi untuk optimasi dengan Program Dinamik (Application of sine-product model as the irrigation production function for optimization with Dynamic Programming). Jurnal Teknik – Fakultas Teknik Universitas Brawijaya, 14, 97–103.
[25] Soetopo, W. (2009). Application of Sine-Product Model for Operation of Irrigation Reservoir. World Applied Sciences Journal, 7(8), 1060–1064.
[26] Murillo, R. F. P., Lavado Casimiro, W., Pachac Huerta, Y. C., Zapana Quispe, M., & Guevara-Freire, D. (2024). Using the SWAT Model to Simulate the Hydrological Response to LULC in a Binational Basin between Ecuador and Peru. Engineering, Technology and Applied Science Research, 14(6), 17816–17823. doi:10.48084/etasr.8646.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














