Using Geoinformation Technologies for Evaluation and Resilience Forecast of Open Pit Walls
Downloads
Downloads
[1] Wyllie, D. C., & Mah, C. (2004). Rock slope engineering. CRC Press, Boca Raton, United States.
[2] Zeitinova, S., Imashev, A., Bakhtybayev, N., Matayev, A., Mussin, A., & Yeskenova, G. (2024). Numerical Modeling the Rock Mass Stress-Strain State Near Vertical Excavations in Combined Mining. Civil Engineering Journal, 10(9), 2919–2934. doi:10.28991/CEJ-2024-010-09-010.
[3] Markov, A. B., Hormazabal, E., Livinsky, I. S., Spirin, V. I., & Soluyanov, N. O. (2019). Methodology of back analysis of cohesion and friction of joints based on pit slope failure events. Australasian Mine Safety Journal, 4, 95-98.
[4] Krupnik, L. A., Shaposhnik, Yu. N., Shaposhnik, S. N., Nurshaiykova, G. T., & Tungushbaeva, Z. K. (2017). Technology of Backfill Preparation Based on Cement-and-Slag Binder in Orlov Mine. Journal of Mining Science, 53(1), 77–83. doi:10.1134/s1062739117011872.
[5] Read, J., & Stacey, P. (2009). Guidelines for Open Pit Slope Design. CSIRO Publishing, Clayton, Australia. doi:10.1071/9780643101104.
[6] Martin, D., & Stacey, P. (2018). Guidelines for open pit slope design in weak rocks. CSIRO Publishing, Clayton, Australia.
[7] Hoek, E. and Brown, E.T. (2019) The Hoek-Brown Failure Criterion and GSI—2018 Edition. Journal of Rock Mechanics and Geotechnical Engineering, 11, 445-463. doi:10.1016/j.jrmge.2018.08.001
[8] Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203–215. doi:10.1016/j.ijrmms.2005.06.005.
[9] Le Roux, R., Sepehri, M., Khaksar, S., & Murray, I. (2025). Slope Stability Monitoring Methods and Technologies for Open-Pit Mining: A Systematic Review. Mining, 5(2), 32. doi:10.3390/mining5020032.
[10] Francioni, M., Salvini, R., Stead, D., Giovannini, R., Riccucci, S., Vanneschi, C., & Gullì, D. (2015). An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Computers and Geotechnics, 67, 46–63. doi:10.1016/j.compgeo.2015.02.009.
[11] Arif, A., Zhang, C., Sajib, M. H., Uddin, M. N., Habibullah, M., Feng, R., Feng, M., Rahman, M. S., & Zhang, Y. (2025). Rock Slope Stability Prediction: A Review of Machine Learning Techniques. Geotechnical and Geological Engineering, 43(3), 124. doi:10.1007/s10706-025-03091-5.
[12] Choi, J., Cho, Y., Kim, Y., Kim, Y., & Ji, B. (2023). Machine Learning-Based Slope Failure Prediction Model Considering the Uncertainty of Prediction. Maireinfra 2023, 6. doi:10.3390/engproc2023036006.
[13] Yan, P., Zou, Y. J., Lu, W. B., Hu, Y. G., Leng, Z. D., Zhang, Y. Z., Liu, L., Hu, H. R., Chen, M., & Wang, G. H. (2016). Real-time assessment of blasting damage depth based on the induced vibration during excavation of a high rock slope. Geotechnical Testing Journal, 39(6), 991–1005. doi:10.1520/GTJ20150187.
[14] Ortega, J. H., Rapiman, M., Lecaros, R., Medel, F., Padilla, F., & García, A. (2016). Predictive Index for slope instabilities in open pit mining. Physics, 2–32. doi:10.48550/arXiv.1607.05085.
[15] Melentijević, S., Berisavljević, Z., Berisavljević, D., & Marañón, C. O. (2024). Rock slope stability analysis under Hoek–Brown failure criterion with different flow rules. Bulletin of Engineering Geology and the Environment, 83(5), 181. doi:10.1007/s10064-024-03667-0.
[16] Ván, P., & Vásárhelyi, B. (2014). Sensitivity analysis of GSI based mechanical parameters of the rock mass. Periodica Polytechnica Civil Engineering, 58(4), 379–386. doi:10.3311/ppci.7507.
[17] Doudkin, M. V., Apshikur, B., Kim, A. I., Ipalakov, T. T., Asangaliev, E. A., Mlynczak, M., & Tungushbaeva, Z. K. (2019). Development of Mathematical Models Describing the Processes Occurring in the Railway Track Construction as a whole, or in the Work of Its Individual Elements. News of National Academy of Sciences of the Republic of Kazakhstan, 5(437), 6–15. doi:10.32014/2019.2518-170x.120.
[18] Makarov, A. B., Ananin, A. I., & Mosyakin, D. V. (2017). Weakening of failed rocks and sinking conditions. Gornyi Zhurnal, 3, 32–36. doi:10.17580/gzh.2017.03.06.
[19] Kashnikov, Y. A., Ashikhmin, S. G., Shustov, D. V., Fandeev, A. E., & Ananin, A. I. (2010). Geomechanical estimate of the rock mass state in the course of deep level mining in terms of the tishinsk de posit. Journal of Mining Science, 46(2), 128–135. doi:10.1007/s10913-010-0017-6.
[20] Ananin, A. I., Tungushbayeva, Z. K., Nurshaiykova, G. T., & Kalelova, G. Zh. (2022). Top-Down Cut-and-Fill Mining Method at the Pervomayskiy De posit of the Donskoy Mining and Beneficiation Plant. Series of Geology and Technical Sciences, 4(454), 16–27. doi:10.32014/2022.2518-170x.197.
[21] Khuangan, N., Asainov, S., Khojayev, T., Azimbayeva, Z., Atageldiyev, K., Nurshaiykova, G., & Akylbayeva, A. (2024). Predicting the magnitude of technogenic earthquakes during underground mining of the Zhezkazgan ore field. Mining of Mineral Deposi ts, 18(1), 45–53. doi:10.33271/mining18.01.045.
[22] Lalicata, L. M., Bressan, A., Pittaluga, S., Tamellini, L., & Gallipoli, D. (2025). An Efficient Slope Stability Algorithm with Physically Consistent Parametrisation of Slip Surfaces. International Journal of Civil Engineering, 23(4), 671–682. doi:10.1007/s40999-024-01053-1.
[23] Ortega, J. H., Rapiman, M., Rojo, L., & Rivacoba, J. P. (2018). A validation of the use of data sciences for the study of slope stability in open pit mines. arXiv Preprint, arXiv:1806.08426. doi:10.48550/arXiv.1806.08426.
[24] Marcak, H., & Mutke, G. (2013). Seismic activation of tectonic stresses by mining. Journal of Seismology, 17(4), 1139–1148. doi:10.1007/s10950-013-9382-3.
[25] Hutchinson, D.J. and Diederichs, M.S. (1996) Cablebolting in Underground Mines. Bi Tech Publishers, Richmond, United States. doi:10.48550/arXiv.1806.08426.
[26] NGI. (2023). Using the Q-system. Handbook Rock mass classification and support design. Norwegian Geotechnical Institute, Oslo, Norway. Available online: https://www.ngi.no/globalassets/bilder/forskning-og-radgivning/bygg-og-anlegg/handbook-the-q-system-may-2015-nettutg_update-june-2022.pdf (accessed on August 2025).
[27] Hudson, J. A., & Harrison, J. P. (2000). Engineering rock mechanics: an introduction to the principles. Elsevier, London, United Kingdom.
[28] Snelling, P. E., Godin, L., & McKinnon, S. D. (2013). The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada. International Journal of Rock Mechanics and Mining Sciences, 58, 166–179. doi:10.1016/j.ijrmms.2012.10.005.
[29] Jiang, J., Yang, H., Cao, L., Wang, D., Wang, L., Jia, Z., Lu, Y., & Di, S. (2022). Bearing Capacity Calculation of Soft Foundation of Waste Dumps—A Case of Open-Pit Mine. Frontiers in Earth Science, 10, 1–11. doi:10.3389/feart.2022.839659.
[30] Livinskiy, I. S., Mitrofanov, A. F., & Makarov, A. B. (2017). Complex geomechanical modeling: Structure, geology, reasonable sufficiency. Gornyi Zhurnal, 8, 51–55. doi:10.17580/gzh.2017.08.09.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
