Determination of Second Virial Coefficient of Gold by a Modified Berthelot Equation of State
Abstract
Doi: 10.28991/HEF-2020-01-04-02
Full Text: PDF
Keywords
References
Martynyuk, M. M. (1999). Ideal tensile strength of metals on the basis of a generalized Van der Waals equation. Journal of Engineering Physics and Thermophysics, 72(4), 682–686. doi:10.1007/bf02699274.
Palpant, B., Guillet, Y., Rashidi-Huyeh, M., &Prot, D. (2008). Gold nanoparticle assemblies: Thermal behaviour under optical excitation. Gold Bulletin, 41(2), 105–115. doi:10.1007/BF03216588.
Inogamov, N., Zhakhovsky, V., &Khokhlov, V. (2018). Laser ablation of metal into liquid: Near critical point phenomena and hydrodynamic instability. AIP Conference Proceedings, 1979, 203101. doi:10.1063/1.5045043.
Esther, J., &Sridevi, V. (2017). Synthesis and characterization of chitosan-stabilized gold nanoparticles through a facile and green approach. Gold Bulletin, 50(1), 1. doi:10.1007/s13404-016-0189-1.
Jurkin, T., Guliš, M., Dražić, G., &Gotić, M. (2016). Synthesis of gold nanoparticles under highly oxidizing conditions. Gold Bulletin, 49(1–2), 21–33. doi:10.1007/s13404-016-0179-3.
Larsson, S. (2004). Superconductivity in copper, silver, and gold compounds. Chemistry - A European Journal, 10(21), 5276–5283. doi:10.1002/chem.200400017.
Manas, A. (2020). Gold’s red shift: colorimetry of multiple reflections in grooves. Gold Bulletin, 53(3–4), 147–158. doi:10.1007/s13404-020-00285-y.
Manisekaran, R., Jiménez-Cervantes Amieva, E., Valdemar-Aguilar, C. M., &López-Marín, L. M. (2020). Novel synthesis of polycationic gold nanoparticles and their potential for microbial optical sensing. Gold Bulletin, 53(3–4), 135–140. doi:10.1007/s13404-020-00283-0.
Masoud, N., Partsch, T., de Jong, K. P., & de Jongh, P. E. (2019). Thermal stability of oxide-supported gold nanoparticles. Gold Bulletin, 52(2), 105–114. doi:10.1007/s13404-019-00259-9.
Ko, S. H., Choi, Y., Hwang, D. J., Grigoropoulos, C. P., Chung, J., &Poulikakos, D. (2006). Nanosecond laser ablation of gold nanoparticle films. Applied Physics Letters, 89(14), 141126. doi:10.1063/1.2360241.
Sawtelle, S. D., & Reed, M. A. (2019). Temperature-dependent thermal conductivity and suppressed Lorenz number in ultrathin gold nanowires. Physical Review B, 99(5), 54304. doi:10.1103/PhysRevB.99.054304.
Shim, S. H., Duffy, T. S., &Takemura, K. (2002). Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth and Planetary Science Letters, 203(2), 729–739. doi:10.1016/S0012-821X(02)00917-2.
Sadrolhosseini, A. R., Abdul Rashid, S., &Zakaria, A. (2017). Synthesis of Gold Nanoparticles Dispersed in Palm Oil Using Laser Ablation Technique. Journal of Nanomaterials, 2017, 6496390. doi:10.1155/2017/6496390.
Wang, Y., Zhou, X., Liu, Q., Jin, Y., Xu, C., & Li, B. (2020). Gold nanorods as colorimetric probes for naked-eye recognition of carnitine enantiomers. Gold Bulletin, 53(3–4), 159–165. doi:10.1007/s13404-020-00286-x.
Wu, Z. Q., & Lin, F. (2017). Evaluation of Pt and Au pressure scales based on MgO absolute pressure scale. Science China Earth Sciences, 60(1), 114–123. doi:10.1007/s11430-015-0232-4.
Wisniak, J. (2010). Daniel Berthelot. Part I. Contribution to thermodynamics. EducacionQuimica, 21(2), 155–162. doi:10.1016/s0187-893x(18)30166-6.
Bessinger, B., & Apps, J. A. (2005). The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver. (No. LBNL-57395). Lawrence Berkeley National Lab. (LBNL), Berkeley, California, United States.
Kubaschewski, O., & von Goldbeck, O. (1975). The thermochemistry of gold - Fundamental data for the solution of practical problems. Gold Bulletin, 8(3), 80–85. doi:10.1007/BF03215072.
Etchegoin, P. G., Le Ru, E. C., & Meyer, M. (2006). An analytic model for the optical properties of gold. Journal of Chemical Physics, 125(16), 164705. doi:10.1063/1.2360270.
Kazakevich, V. S., Kazakevich, P. V., Yaresko, P. S., &Kazakevich, D. A. (2018). Laser ablation of gold and titanium targets in heavy water. Journal of Physics: Conference Series, 1096(1), 12123. doi:10.1088/1742-6596/1096/1/012123.
Lytton-Jean, A. K. R., &Mirkin, C. A. (2005). A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. Journal of the American Chemical Society, 127(37), 12754–12755. doi:10.1021/ja052255o.
Migdal, K. P., Il’Nitsky, D. K., Petrov, Y. V., &Inogamov, N. A. (2015). Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold. Journal of Physics: Conference Series, 653(1), 12086. doi:10.1088/1742-6596/653/1/012086.
Jhabvala, J., Boillat, E., Antignac, T., &Glardon, R. (2010). On the effect of scanning strategies in the selective laser melting process. Virtual and Physical Prototyping, 5(2), 99–109. doi:10.1080/17452751003688368.
Otmani, S., Tamim, R., Moustaine, D., &Mahdouk, K. (2017). Thermodynamic properties of gold-rare earth elements. European Physical Journal: Special Topics, 226(5), 1123–1135. doi:10.1140/epjst/e2016-60227-3.
Puliti, G., Paolucci, S., & Sen, M. (2012). Thermodynamic properties of gold-water nanofluids using molecular dynamics. Journal of Nanoparticle Research, 14(12), 1296. doi:10.1007/s11051-012-1296-4.
Ruffino, F., Grimaldi, M. G., Giannazzo, F., Roccaforte, F., &Raineri, V. (2008). Thermodynamic properties of supported and embedded metallic nanocrystals: Gold on/in SiO2. Nanoscale Research Letters, 3(11), 454–460. doi:10.1007/s11671-008-9180-y.
Singh, J. K., Adhikari, J., &Kwak, S. K. (2006). Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilibria, 248(1), 1–6. doi:10.1016/j.fluid.2006.07.010.
Sobko, A. A. (2014). Description of Evaporation Curve by the Generalized Van-der-Waals-Berthelot Equation. Part I. Journal of Physical Science and Application, 4(8), 524-530.
Balasubramanian, R. (2019). Thermodynamic Limit of Superheat of Fluids by a Generalized Berthelot Equation of State. American Journal of Materials Science and Application, 7, 3.
Khomkin, A. L., &Shumikhin, A. S. (2017). The thermodynamics and transport properties of transition metals in critical point. High Temperatures - High Pressures, 46(4–5), 367–380.
Boschi-Filho, H., &Buthers, C. C. (1997). Second virial coefficient for real gases at high temperature. arXiv, 1-31, doi:10.48550/arXiv.cond-mat/9701185.
Sadus, R. J. (2002). The Dieterici alternative to the van der Waals approach for equations of state: Second virial coefficients. Physical Chemistry Chemical Physics, 4(6), 919–921. doi:10.1039/b108822j.
Poling, B.E., Prausnitz, J.M., O’Connell, J.P. (2001). The Properties of Gases and Liquids. Fifth Edition, McGraw-Hill Companies, New York, United States.
McGlashan, M. L. (1968). Compression Factors, Landolt Bornstein. Royal Institute of Chemistry, London, United Kingdom.
DOI: 10.28991/HEF-2020-01-04-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 M Siva Kumar, R Balasubramanian