Integrated Hydrologic-Hydrodynamic Inundation Modeling in a Groundwater Dependent Tropical Floodplain

Innocent C. Chomba, Kawawa E. Banda, Hessel C. Winsemius, Makungu Eunice, Henry M. Sichingabula, Imasiku A. Nyambe


The rapid development of free and open-access hydrological models and coupling framework tools continues to present more opportunities for coupled model development for improved assessment of floodplain hydrology. In this study, we set up an Upper Zambezi hydrological model and a fully spatially hydrological-hydrodynamic coupled model for the Barotse Floodplain using GLOFRIM (GLObally applicable computational FRamework for Integrated hydrological–hydrodynamic Modelling). The hydrological and hydrodynamic models used are WFLOW and LISFLOOD-FP, respectively. The simulated flows generated by the wflow model for the upstream gauge stations before the Barotse Floodplain were quite similar and closely matched the observed flow as indicated by the evaluation statistics; Chavuma, nse = 0.738; kge = 0.738; pbias = 2.561 and RSR = 0.511; Watopa, nse = 0.684; kge = 0.816; pbias = 10.577 and RSR = 0.557; and Lukulu, nse = 0.736; kge = 0.795; pbias = 10.437 and RSR = 0.509. However, even though the wflow hydrological model was able to simulate the upstream hydrology very well, the results at the floodplain outlet gauge stations did not quite match the observed monthly flows at Senanga gauge station as indicated by the evaluation statistics: nse = 0.132; kge = 0.509; pbias = 37.740 and RSR = 0.9233. This is mainly because the representation of both floodplain channel hydrodynamics and vertical hydrological processes is necessary to correctly capture floodplain dynamics. Thus, the need for an approach that saves as a basis for developing fully spatially distributed coupled hydrodynamic and hydraulic models’ assessments for groundwater dependent tropical floodplains such as the Barotse floodplain, in closing the gap between hydrology and hydrodynamics in floodplain assessments. A fully coupled model has the potential to be used in implementing adaptive wetland management strategies for water resources allocation, environmental flow (eflows), flood control, land use and climate change impact assessments.


Doi: 10.28991/HEF-2022-03-02-09

Full Text: PDF


Barotse Floodplain; River Flow; Flood Wave Propagation; Hydrologic-hydrodynamic Model.


Yamazaki, D., Baugh, C. A., Bates, P. D., Kanae, S., Alsdorf, D. E., & Oki, T. (2012). Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 436-437, 81–91. doi:10.1016/j.jhydrol.2012.02.045.

Makungu, E., & Hughes, D. A. (2021). Understanding and modelling the effects of wetland on the hydrology and water resources of large African river basins. Journal of Hydrology, 603. doi:10.1016/j.jhydrol.2021.127039.

Phiri, W. K., Vanzo, D., Banda, K., Nyirenda, E., & Nyambe, I. A. (2021). A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system. Journal of Hydrology: Regional Studies, 33, 100770. doi:10.1016/j.ejrh.2020.100770.

Hunter, N. M., Bates, P. D., Horritt, M. S., & Wilson, M. D. (2007). Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology, 90(3–4), 208–225. doi:10.1016/j.geomorph.2006.10.021.

Hoch, J. M., Neal, J. C., Baart, F., Van Beek, R., Winsemius, H. C., Bates, P. D., & Bierkens, M. F. P. (2017a). GLOFRIM v1.0-A globally applicable computational framework for integrated hydrological-hydrodynamic modelling. Geoscientific Model Development, 10(10), 3913–3929. doi:10.5194/gmd-10-3913-2017.

Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., & Winsemius, H. C. (2019). Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic-hydrodynamic model coupling framework. Natural Hazards and Earth System Sciences, 19(8), 1723–1735. doi:10.5194/nhess-19-1723-2019.

Van Beek, L. P. H. & Bierkens, M. F. P. (2009). The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Tech. rep., Department of Physical Geography, Utrecht University, Utrecht, the Netherlands.

Van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47(7). doi:10.1029/2010WR009791.

Yamazaki, D. (2014). The global hydrodynamic model CaMa-Flood (version 3.6.2). JAMSTEC – Japan Agency for Marine-Earth Science and Technology. Available online: (accessed on March 2022).

Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. doi:10.1016/j.jhydrol.2010.03.027.

Nijssen, B., O’donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50(1–2), 143–175. doi:10.1023/A:1010616428763.

Zhang, G. H., Nearing, M. A., & Liu, B. Y. (2005). Potential effects of climate change on rainfall erosivity in the Yellow River basin of China. Transactions of the American Society of Agricultural Engineers, 48(2), 511–517. doi:10.13031/2013.18325.

Zhang, X., Srinivasan, R., & Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Transactions of the ASABE, 50(3), 901–910. doi:10.13031/2013.23154.

Schumann, G. J.-P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., … Bates, P. D. (2013). A first large-scale flood inundation forecasting model. Water Resources Research, 49(10), 6248–6257. doi:10.1002/wrcr.20521.

Zimba, H., Kawawa, B., Chabala, A., Phiri, W., Selsam, P., Meinhardt, M., & Nyambe, I. (2018). Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. Journal of Hydrology: Regional Studies, 15, 149–170. doi:10.1016/j.ejrh.2018.01.002.

Makungu, E.J. A. (2020). Combined Modelling Approach for Simulating Channel–Wetland Exchanges in Large African River Basins. PhD thesis. Rhodes University, Grahamstown, South Africa.

Michailovsky, C. I., & Bauer-Gottwein, P. (2014). Operational reservoir inflow forecasting with radar altimetry: The Zambezi case study. Hydrology and Earth System Sciences, 18(3), 997–1007. doi:10.5194/hess-18-997-2014.

Hoch, J. M., Haag, A. V., Van Dam, A., Winsemius, H. C., Van Beek, L. P. H., & Bierkens, M. F. P. (2017b). Assessing the impact of hydrodynamics on large-scale flood wave propagation – A case study for the Amazon Basin. Hydrology and Earth System Sciences, 21(1), 117–132. doi:10.5194/hess-21-117-2017.

Hughes, R. H. & Hughes, J. S. (1992). A Directory of African Wetlands. IUCN, Gland, Cambridge; UNEP, Nairobi; WCMC, Cambridge, UK.

Timberlake, J. (2000). Biodiversity of the Zambezi Basin. Biodiversity Foundation for Africa, Bulawayo, Zimbabwe.

IUCN. (2003). Barotse floodplain, Zambia: local economic dependence on wetland resources. In Integrating Wetland Economic Values into River Basin Management (May). The World Conservation Union Regional Office for Southern Africa. Gland, Switzerland.

Deltares Wflow Documentation. (2019). Available online: (accessed on March 2022).

Hassaballah, K., Mohamed, Y., Uhlenbrook, S., & Biro, K. (2017). Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia–Sudan). Hydrology and Earth System Sciences, 21(10), 5217–5242. doi:10.5194/hess-21-5217-2017.

Umuhuza, I. A., (2020). Estimating irrigation potential using ‘wflow’ distributed hydrological model within the Rwandan part of the Akagera River basin. MSc. Thesis. IHE Delft Institute for Water Education, Delft, the Netherlands. doi:10.25831/4zdm-p249.

Vertessy, R. A., & Elsenbeer, H. (1999). Distributed modeling of storm flow generation in an Amazonian rain forest catchment: Effects of model parameterization. Water Resources Research, 35(7), 2173–2187. doi:10.1029/1999WR900051.

De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). Lisem: A single-event physically based hydrological and soil erosion model for drainage basins. I: Theory, input and output. Hydrological Processes, 10(8), 1107–1117. doi:10.1002/(sici)1099-1085(199608)10:8<1107::aid-hyp415>;2-4.

Buontempo, C., Thépaut, J.-N., & Bergeron, C. (2020). Copernicus Climate Change Service. IOP Conference Series: Earth and Environmental Science, 509(1), 012005. doi:10.1088/1755-1315/509/1/012005.

Arino, O., Perez, J. R., Kalogirou, V., Defourny, P., & Achard, F. (2010). Global Land Cover Map for 2009 (GlobCover 2009). In ESA Living Planet Symposium , 1–3. doi:10.1594/PANGAEA.787668.

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. doi:10.1371/journal.pone.0169748.

Yamazaki, D., Baugh, C. A., Bates, P. D., Kanae, S., Alsdorf, D. E., & Oki, T. (2012). Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 436-437, 81–91. doi:10.1016/j.jhydrol.2012.02.045.

Neal, J., Schumann, G., & Bates, P. (2012). A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resources Research, 48(11), 1–16. doi:10.1029/2012WR012514.

Trigg, M. A., Wilson, M. D., Bates, P. D., Horritt, M. S., Alsdorf, D. E., Forsberg, B. R., & Vega, M. C. (2009). Amazon flood wave hydraulics. Journal of Hydrology, 374(1-2), 92-105. doi:10.1016/j.jhydrol.2009.06.004.

Bates, P. D., & De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1–2), 54–77. doi:10.1016/S0022-1694(00)00278-X.

Ma, L., Ascough, J. C., Ahuja, L. R., Shaffer, M. J., Hanson, J. D., & Rojas, K. W. (2000). Root Zone Water Quality Model sensitivity analysis using Monte Carlo simulation. Transactions of the American Society of Agricultural Engineers, 43(4), 883–895. doi:10.13031/2013.2984.

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249(1–4), 11–29. doi:10.1016/S0022-1694(01)00421-8.

Hallouin, T. (2020). HydroEval: Streamflow Simulations Evaluator (Version 0.0.3). doi:10.5281/zenodo.3402383.

Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004.

Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. doi:10.13031/2013.23153.

Komi, K., Neal, J., Trigg, M. A., & Diekkrüger, B. (2017). Modelling of flood hazard extent in data sparse areas: a case study of the Oti River basin, West Africa. Journal of Hydrology: Regional Studies, 10, 122–132. doi:10.1016/j.ejrh.2017.03.001.

Full Text: PDF

DOI: 10.28991/HEF-2022-03-02-09


  • There are currently no refbacks.

Copyright (c) 2022 Chomba Innocent Chomba, Kawawa Banda, Hessel Winsemius, Eunice Makungu, Henry Sichingabula, Imasiku Nyambe