A Crowd-Sourcing Project to Understand, Prevent and Manage Incidences of Injury and Wounding to Astronauts and Off-Earth Colonists

Ben Cahill, Martin Braddock

Abstract


Recent technical successes of the unmanned Mars 2020, Tianwen-1 and Hope Mars missions have further increased our hunger for space exploration and the possible colonisation of Mars is now firmly on the mid-term horizon. Furthermore, renewed commitment to settle on the Moon is anticipated within the next three years, led by NASA’s Artemis programme utilising the pan-space agency constructed lunar Gateway or Space X’s Starship system. These programmes will necessitate a larger number of astronauts spending longer periods in space and despite rigorous risk identification and mitigation procedures, injury is an inevitable consequence and management procedures will demand efficient and effective implementation. We have employed Cognitive Work Analysis to derive an abstraction hierarchy for reducing the potential for physical injury and managing the consequence of injury in space. We have used a crowd-sourcing approach to cluster factors and themes which may emanate from within or without habitat and consider solution management in the light of current and emerging technology. In addition, we also consider mental fitness as a confounder which may emerge during missions and propose methods for both measurement and management.

 

Doi: 10.28991/HEF-2022-03-03-04

Full Text: PDF


Keywords


Systems Ergonomics; Human Factors; Cognitive Work Analysis; Wound Prevention; Wound Management; Technology.

References


Granath, B. (2015). The human desire for exploration leads to discovery. National Aeronautics and Space Administration (NASA). Available online: https://www.nasa.gov/feature/the-human-desire-for-exploration-leads-to-discovery (accessed on August 2022).

Vernikos, J. (2008). Human exploration of space: why, where, what for?. Hippokratia, 12(Suppl 1), 6-9.

O’Keefe, S. (2004). The vision for space exploration. National Aeronautics and Space Administration (NASA). Available online: https://history.nasa.gov/SP-4701/session%20intro.pdf (accessed on May 2022).

Obama, B. (2010). Remarks by the president on space exploration in the 21st century. John F. Kennedy Space Center Merritt Island, Florida, United States. Available online: https://obamawhitehouse.archives.gov/the-press-office/remarks-president-space-exploration-21st-century (accessed on August 2022).

Moltz, J. C. (2019). The changing dynamics of twenty-first- century space power. Journal of Strategic Security, 12(1), 15–43. doi:10.5038/1944-0472.12.1.1729.

Whitwam, R. (2021). 5 Reasons space exploration is more important than ever. ExtremeTech https://www.extremetech.com/ extreme/268062-5-reasons-space-exploration-is-more-important-than-ever (accessed on August 2022).

World Economic Forum. (2021). Space: Why the human race must become a multiplanetary species. Available online: https://www.weforum.org/agenda/2021/12/humans-multiplanetary-species/ (accessed on August 2022).

Levchenko, I., Xu, S., Mazouffre, S., Keidar, M., & Bazaka, K. (2021). Mars Colonization: Beyond Getting There. Terraforming Mars, 3(1800062), 73–98. doi:10.1002/9781119761990.ch5.

Braddock, M., Wilhelm, C. P., Romain, A., Bale, L., & Szocik, K. (2020). Application of socio-technical systems models to Martian colonisation and society build. Theoretical Issues in Ergonomics Science, 21(2), 131–152. doi:10.1080/1463922X.2019.1658242.

Szocik, K., Wójtowicz, T., & Braddock, M. (2020). The Martian: Possible Scenarios for a Future Human Society on Mars. Space Policy, 54, 101388. doi:10.1016/j.spacepol.2020.101388.

Szocik, K., Abood, S., Impey, C., Shelhamer, M., Haqq-Misra, J., Persson, E., Oviedo, L., Capova, K. A., Braddock, M., Rappaport, M. B., & Corbally, C. (2020). Visions of a Martian future. Futures, 117, 102514. doi:10.1016/j.futures.2020.102514.

European Space Agency (2018). Comparing the Atmospheres of Mars and Earth. Available online: https://www.esa.int/ESA_Multimedia/Images/2018/04/Comparing_the_atmospheres_of_Mars_and_Earth (acessed on May 2022).

Hecht, M., Hoffman, J., Rapp, D., McClean, J., SooHoo, J., Schaefer, R., Aboobaker, A., Mellstrom, J., Hartvigsen, J., Meyen, F., Hinterman, E., Voecks, G., Liu, A., Nasr, M., Lewis, J., Johnson, J., Guernsey, C., Swoboda, J., Eckert, C., … Ponce, A. (2021). Mars Oxygen ISRU Experiment (MOXIE). Space Science Reviews, 217(1). doi:10.1007/s11214-020-00782-8.

National Aeronautics and Space Administration (2021). Planetary Fact Sheet - Ratio to Earth Values. NASA. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html (accessed on August 2022).

Clement, G., Boyle, R. D., & Gunga, H. C. (2019). Editorial: The Effects of Altered Gravity on Physiology. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.01447.

Iwase, S., Nishimura, N., Tanaka, K., & Mano, T. (2020). Effects of Microgravity on Human Physiology. Beyond LEO - Human Health Issues for Deep Space Exploration. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.90700.

Goswami, N., White, O., Blaber, A., Evans, J., van Loon, J. J. W. A., & Clement, G. (2021). Human physiology adaptation to altered gravity environments. Acta Astronautica, 189, 216–221. doi:10.1016/j.actaastro.2021.08.023.

Adamopoulos, K., Koutsouris, D., Zaravinos, A., & Lambrou, G. I. (2021). Gravitational influence on human living systems and the evolution of species on earth. Molecules, 26(9), 2784. doi:10.3390/molecules26092784.

Liu, L. G. (2022). Water on/in Mars and the Moon. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 3. doi:10.1007/s44195-022-00001-7.

Wamelink, G. W. W., Frissel, J. Y., Krijnen, W. H. J., Verwoert, M. R., & Goedhart, P. W. (2014). Can plants grow on mars and the moon: A growth experiment on mars and moon soil simulants. PLoS ONE, 9(8), 103138. doi:10.1371/journal.pone.0103138.

Wamelink, G. W. W., Frissel, J. Y., Krijnen, W. H. J., & Verwoert, M. R. (2019). Crop growth and viability of seeds on Mars and Moon soil simulants. Open Agric. 4, 509–516. doi:10.1515/opag-2019-0051.

Harris, F., Dobbs, J., Atkins, D., Ippolito, J. A., & Stewart, J. E. (2021). Soil fertility interactions with Sinorhizobiumlegume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health. PLoS ONE, 16(9), 257053. doi:10.1371/journal.pone.0257053.

Duri, L. G., Caporale, A. G., Rouphael, Y., Vingiani, S., Palladino, M., De Pascale, S., & Adamo, P. (2022). The Potential for Lunar and Martian Regolith Simulants to Sustain Plant Growth: A Multidisciplinary Overview. Frontiers in Astronomy and Space Sciences, 8. doi:10.3389/fspas.2021.747821.

Lomax, B. A., Just, G. H., McHugh, P. J., Broadley, P. K., Hutchings, G. C., Burke, P. A., Roy, M. J., Smith, K. L., & Symes, M. D. (2022). Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nature Communications, 13(1), 583. doi:10.1038/s41467-022-28147-5.

Williams, D.R. (2021). Mars Fact sheet. NASA. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (accessed on August 2022).

Kirkpatrick, A. W., Ball, C. G., Campbell, M., Williams, D. R., Parazynski, S. E., Mattox, K. L., & Broderick, T. J. (2009). Severe traumatic injury during long duration spaceflight: Light years beyond ATLS. Journal of Trauma Management & Outcomes, 3(1), 4. doi:10.1186/1752-2897-3-4.

Dadwal, U. C., Maupin, K. A., Zamarioli, A., Tucker, A., Harris, J. S., Fischer, J. P., Rytlewski, J. D., Scofield, D. C., Wininger, A. E., Bhatti, F. U. R., Alvarez, M., Childress, P. J., Chakraborty, N., Gautam, A., Hammamieh, R., & Kacena, M. A. (2019). The effects of spaceflight and fracture healing on distant skeletal sites. Scientific Reports, 9(1), 11419. doi:10.1038/s41598-019-47695-3.

Yang, J. Q., Sun, P. M., Jiang, N., Yue, Y., Li, Z. P., Guo, S., Chen, Z. Y., Li, B. Bin, Chai, S. Bin, Lu, S. Y., Yan, H. F., Zhang, T., Sun, H. W., Yang, J. W., Zhou, J. L., Yang, H. M., & Cui, Y. (2021). Impact of Microgravity on the Skin and the Process of Wound Healing. Microgravity Science and Technology, 33(5), 64. doi:10.1007/s12217-021-09907-2.

Komorowski, M., Fleming, S., & Kirkpatrick, A. W. (2016). Fundamentals of Anesthesiology for Spaceflight. Journal of Cardiothoracic and Vascular Anesthesia, 30(3), 781–790. doi:10.1053/j.jvca.2016.01.007.

Akiyama, T., Horie, K., Hinoi, E., Hiraiwa, M., Kato, A., Maekawa, Y., Takahashi, A., & Furukawa, S. (2020). How does spaceflight affect the acquired immune system? Npj Microgravity, 6(1), 14. doi:10.1038/s41526-020-0104-1.

Spatz, J. M., Fulford, M. H., Tsai, A., Gaudilliere, D., Hedou, J., Ganio, E., Angst, M., Aghaeepour, N., & Gaudilliere, B. (2021). Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Scientific Reports, 11(1), 11872. doi:10.1038/s41598-021-90458-2.

Patel, Z. S., Brunstetter, T. J., Tarver, W. J., Whitmire, A. M., Zwart, S. R., Smith, S. M., & Huff, J. L. (2020). Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. Npj Microgravity, 6(1), 33. doi:10.1038/S41526-020-00124-6.

Vicente, K. J. (1999). Cognitive work analysis: Toward safe, productive, and healthy computer-based work. CRC press, Boca Raton, United States. doi:10.1201/b12457.

Naikar, N. (2017). Cognitive work analysis: An influential legacy extending beyond human factors and engineering. Applied Ergonomics, 59, 528–540. doi:10.1016/j.apergo.2016.06.001.

Naikar, N. (2013). Work domain analysis: Concepts, guidelines, and cases. CRC press, Boca Raton, United States.

Szocik, K., Wójtowicz, T., & Braddock, M. (2020). The Martian: Possible Scenarios for a Future Human Society on Mars. Space Policy, 54, 101388. doi:10.1016/j.spacepol.2020.101388.

Shorrock, S. T., & Williams, C. A. (2016). Human factors and ergonomics methods in practice: three fundamental constraints. Theoretical Issues in Ergonomics Science, 17(5–6), 468–482. doi:10.1080/1463922X.2016.1155240.

Stanton, N. A., Salmon, P. M., Walker, G. H., & Jenkins, D. P. (2017). Cognitive Work Analysis. CRC Press, Boca Raton, United States. doi:10.1201/9781315572536.

de Vries, L., & Bligård, L. O. (2019). Visualising safety: The potential for using sociotechnical systems models in prospective safety assessment and design. Safety Science, 111, 80–93. doi:10.1016/j.ssci.2018.09.003.

Salmon, P. M., Stanton, N. A., Read, G. J., Walker, G. H., Stevens, N. J., & Hancock, P. A. (2019). From systems ergonomics to global ergonomics: The world as a socio‐ecological‐technical system. Chartered Institute of Ergonomics and Human Factors Annual Meeting, 28 October-1 November, 2019, Seattle, United States.

Binsted, K., Kobrick, R. L., Griofa, M. Ó., Bishop, S., & Lapierre, J. (2010). Human factors research as part of a Mars exploration analogue mission on Devon Island. Planetary and Space Science, 58(7–8), 994–1006. doi:10.1016/j.pss.2010.03.001.

Neerincx, M. A. (2011). Situated cognitive engineering for crew support in space. Personal and Ubiquitous Computing, 15(5), 445–456. doi:10.1007/s00779-010-0319-3.

Braddock, M., Szocik, K., & Campa, R. (2019). Ergonomic constraints for astronauts: challenges and opportunities today and for the future. CIEHF Meeting on Ergonomics and Human Factors 2019, 29 April-1 May, 2019, Stratford-upon-Avon; United Kingdom.

Shive, J., & Dischinger Jr, H. C. (2019). Cognitive Work Analysis of Space Launch System Manual Steering. Marshall Space Flight Center Faculty Fellowship Program, 98.

Cinelli, I. (2020). Short- and Long-Duration Mission Human Factors Requirements. Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats. Springer, Cham, Switzerland. doi:10.1007/978-3-319-09575-2_34-1.

Braddock, M. (2017). Ergonomic Challenges for Astronauts during Space Travel and the Need for Space Medicine. Journal of Ergonomics, 07(06), 1–10. doi:10.4172/2165-7556.1000221.

Braddock, M., Hanania, N. A., Sharafkhaneh, A., Colice, G., & Carlsson, M. (2018). Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Safety, 41(5), 489–509. doi:10.1007/s40264-017-0636-9.

Braddock, M. (2019). From Target Identification to Drug Development in Space: Using the Microgravity Assist. Current Drug Discovery Technologies, 17(1), 45–56. doi:10.2174/1570163816666190112150014.

Braddock, M. (2019). Tissue engineering and human regenerative therapies in space: benefits for Earth and opportunities for long term extra-terrestrial exploration. Innovations in tissue engineering and Regenerative medicine, 1(3), 1-5.

Szocik, K. (2019). Human Place in the Outer Space: Skeptical Remarks. An Interdisciplinary Approach, Space and Society, 233–252. doi:10.1007/978-3-030-02059-0_14.

Szocik, K. (2019). Should and could humans go to Mars? Yes, but not now and not in the near future. Futures, 105, 54–66. doi:10.1016/j.futures.2018.08.004.

Sharpe, R., & Braddock, M. (2022). Sustaining Resources for Homo Martis: The Potential Application of Synthetic Biology for the Settlement of Mars. Studia Humana, 11(1), 1–16. doi:10.2478/sh-2022-0001.

Reid, C. R. (2017). Thematic issue: ergonomics in extreme environments and non-traditional workplaces. Theoretical Issues in Ergonomics Science, 18(5), 385–387. doi:10.1080/1463922X.2017.1290159.

Alcibiade, A., Del Mastro, A., Schlacht, I. L., Monaco, F., Finazzi, F., Notea, A., Mukadam, M. M., Masali, M., & Musso, G. (2019). Stress and Human Factors from Antarctica to Mars. Advances in Human Aspects of Transportation, AHFE 2018. Advances in Intelligent Systems and Computing, 786. Springer, Cham, Switzerland. doi:10.1007/978-3-319-93885-1_17.

Smith, N., & Barrett, E. (2020). Coping with life in isolation and confinement during the Covid-19 pandemic. The Psychologist, 2071-1050.

Bhattacharyya, D., Pal, M., Chatterjee, T., & Varshney, R. (2021). Extreme Interaction among Human–Environment–Equipment: A Pilot Study on the Ergonomic Design of Military Snow Boots. Ergonomics in Design: The Quarterly of Human Factors Applications, 106480462110208. doi:10.1177/10648046211020851.

Harrison, D., Sarkar, M., Saward, C., & Sunderland, C. (2021). Exploration of psychological resilience during a 25-day endurance challenge in an extreme environment. International Journal of Environmental Research and Public Health, 18(23), 12707. doi:10.3390/ijerph182312707.

Heinicke, C., & Arnhof, M. (2021). A review of existing analog habitats and lessons for future lunar and Martian habitats. REACH, 21–22, 100038. doi:10.1016/j.reach.2021.100038.

Posselt, B. N., Velho, R., O’Griofa, M., Shepanek, M., Golemis, A., & Gifford, S. E. (2021). “Safety and healthcare provision in space analogs.” Acta Astronautica, 186, 164–170. doi:10.1016/j.actaastro.2021.05.033.

Braddock, M. (2018). Exercise and ergonomics on the International Space Station and Orion spacecraft. Journal of ergonomics research, 1(2).

Brandić Lipińska, M., van Ellen, L., & Damann, V. (2021). Senses as Drivers for Space Habitats Design in Microgravity. 50th International Conference on Environmental Systems, 12-15 July, 2021, Corinthia Hotel Lisbon, Portugal.

Jiang, A., Schlacht, I. L., Yao, X., Foing, B., Fang, Z., Westland, S., Hemingray, C., & Yao, W. (2022). Space Habitat Astronautics: Multicolour Lighting Psychology in a 7-Day Simulated Habitat. Space: Science & Technology, 2022, 1–11. doi:10.34133/2022/9782706.

Fukumura, Y. E., Gray, J. M., Lucas, G. M., Becerik-Gerber, B., & Roll, S. C. (2021). Worker perspectives on incorporating artificial intelligence into office workspaces: Implications for the future of office work. International Journal of Environmental Research and Public Health, 18(4), 1–15. doi:10.3390/ijerph18041690.

Blue, R. S., Chancellor, J. C., Antonsen, E. L., Bayuse, T. M., Daniels, V. R., & Wotring, V. E. (2019). Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. Npj Microgravity, 5(1), 15. doi:10.1038/s41526-019-0076-1.

Ryder, P., Braddock, M. (2022). Harnessing the Space Environment for the Discovery and Development of New Medicines. Handbook of Space Pharmaceuticals. Springer, Cham, Switzerland. doi:10.1007/978-3-030-05526-4_32.

Williams, M., & Braddock, M. (2019). AI Case Studies: Potential for Human Health, Space Exploration and Colonisation and a Proposed Superimposition of the Kubler-Ross Change Curve on the Hype Cycle. Studia Humana, 8(1), 3–18. doi:10.2478/sh-2019-0001.

Russo, A., & Lax, G. (2022). Using Artificial Intelligence for Space Challenges: A Survey. Applied Sciences (Switzerland), 12(10), 5106. doi:10.3390/app12105106.

Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare, 25–60, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-818438-7.00002-2.

Maver, T., Hribernik, S., Mohan, T., Smrke, D. M., Maver, U., & Stana-Kleinschek, K. (2015). Functional wound dressing materials with highly tunable drug release properties. RSC Advances, 5(95), 77873–77884. doi:10.1039/c5ra11972c.

Ballerini, A., Chua, C. Y. X., Rhudy, J., Susnjar, A., Di Trani, N., Jain, P. R., Laue, G., Lubicka, D., Shirazi-Fard, Y., Ferrari, M., Stodieck, L. S., Cadena, S. M., & Grattoni, A. (2020). Counteracting Muscle Atrophy on Earth and in Space via Nanofluidics Delivery of Formoterol. Advanced Therapeutics, 3(7), 2000014. doi:10.1002/adtp.202000014.

Kashaninejad, N., Moradi, E., & Moghadas, H. (2022). Micro/nanofluidic devices for drug delivery. Progress in Molecular Biology and Translational Science, 187(1), 9–39. doi:10.1016/bs.pmbts.2021.07.018.

Cubo-Mateo, N., & Gelinsky, M. (2021). Wound and Skin Healing in Space: The 3D Bioprinting Perspective. Frontiers in Bioengineering and Biotechnology, 9, 720217. doi:10.3389/fbioe.2021.720217.

European Space Agency (2022). BioPrint FirstAid. ESA. Available online: https://www.esa.int/ESA_Multimedia/Images/ 2022/02/Bioprint_First_Aid (accessed on August 2022).

Ferris, D. P. (2009). The exoskeletons are here. Journal of NeuroEngineering and Rehabilitation, 6(1). doi:10.1186/1743-0003-6-17.

Cortés, C., Unzueta, L., De Los Reyes-Guzmán, A., Ruiz, O. E., & Flórez, J. (2016). Optical enhancement of exoskeleton-based estimation of Glenohumeral angles. Applied Bionics and Biomechanics, 2016. doi:10.1155/2016/5058171.

Awad, L. N., Bae, J., O’Donnell, K., De Rossi, S. M. M., Hendron, K., Sloot, L. H., Kudzia, P., Allen, S., Holt, K. G., Ellis, T. D., & Walsh, C. J. (2017). A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine, 9(400), 9084. doi:10.1126/scitranslmed.aai9084.

Hill, D., Holloway, C. S., Morgado Ramirez, D. Z., Smitham, P., & Pappas, Y. (2017). What are user perspectives of exoskeleton technology? A literature review. International Journal of Technology Assessment in Health Care, 33(2), 160–167. doi:10.1017/S0266462317000460.

Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., & Collins, S. H. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1283. doi:10.1126/science.aal5054.

Agrawal, A., Dube, A. N., Kansara, D., Shah, S., & Sheth, S. (2016). Exoskeleton: The Friend of Mankind in context of Rehabilitation and Enhancement. Indian Journal of Science and Technology, 9(S1), 1–8. doi:10.17485/ijst/2016/v9is1/100889.

Lee, J., Kwon, K., & Yeo, W. H. (2022). Recent advances in wearable exoskeletons for human strength augmentation. Flexible and Printed Electronics, 7(2). doi:10.1088/2058-8585/ac6a96.

Low, K. H., Liu, X., Goh, C. H., & Yu, H. (2006). Locomotive control of a wearable lower exoskeleton for walking enhancement. JVC/Journal of Vibration and Control, 12(12), 1311–1336. doi:10.1177/1077546306070616.

Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disability and Rehabilitation: Assistive Technology, 11(7), 535–547. doi:10.3109/17483107.2015.1080766.

Brown, M., Tsagarakis, N., & Caldwell, D. G. (2003). Exoskeletons for human force augmentation. Industrial Robot, 30(6), 592–602. doi:10.1108/01439910310506864.

Rea, R., Beck, C., Rovekamp, R., Diftler, M., & Neuhaus, P. (2013). X1: A robotic exoskeleton for in-space countermeasures and dynamometry. In AIAA SPACE 2013 Conference and Exposition. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2013-5510.

Palacios, P., Cornejo, J., Rivera, M. V., Napan, J. L., Castillo, W., Ticllacuri, V., Reina, A. D., Chaves-Jimenez, A., Jamanca-Lino, G., & Chavez, J. C. (2021). Biomechatronic Embedded System Design of Sensorized Glove with Soft Robotic Hand Exoskeleton Used for Rover Rescue Missions on Mars. 2021 IEEE International IoT, Electronics and Mechatronics Conference (IEMTRONICS). doi:10.1109/iemtronics52119.2021.9422634.

Arone, A., Ivaldi, T., Loganovsky, K., Palermo, S., Parra, E., Flamini, W., & Marazziti, D. (2021). The Burden of Space Exploration on the Mental Health of Astronauts: a Narrative Review. Clinical Neuropsychiatry, 18(5), 237–246. doi:10.36131/cnfioritieditore20210502.

Friedman, E., & Bui, B. (2017). A psychiatric formulary for long-duration spaceflight. Aerospace Medicine and Human Performance, 88(11), 1024–1033. doi:10.3357/AMHP.4901.2017.

Stokel-Walker, C. (2020). Why telemedicine is here to stay. BMJ, m3603. doi:10.1136/bmj.m3603.

Garcia, M. (2022). Innovative 3D telemedicine to help keep astronauts Healthy. NASA: National Aeronautics and Space Administration. Available online: https://www.nasa.gov/feature/innovative-3d-telemedicine-to-help-keep-astronauts-healthy (accessed on August 2022).

Pantalone, D., Faini, G. S., Cialdai, F., Sereni, E., Bacci, S., Bani, D., Bernini, M., Pratesi, C., Stefàno, P. L., Orzalesi, L., Balsamo, M., Zolesi, V., & Monici, M. (2021). Robot-assisted surgery in space: pros and cons. A review from the surgeon’s point of view. Npj Microgravity, 7(1), 56. doi:10.1038/s41526-021-00183-3.

Feizi, N., Tavakoli, M., Patel, R. V., & Atashzar, S. F. (2021). Robotics and AI for Teleoperation, Tele-Assessment, and Tele-Training for Surgery in the Era of COVID-19: Existing Challenges, and Future Vision. Frontiers in Robotics and AI, 8. doi:10.3389/frobt.2021.610677.

Ghaffari, R., Yang, D. S., Kim, J., Mansour, A., Wright, J. A., Model, J. B., Wright, D. E., Rogers, J. A., & Ray, T. R. (2021). State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sensors, 6(8), 2787–2801. doi:10.1021/acssensors.1c01133.

Lou, Z., Wang, L., Jiang, K., Wei, Z., & Shen, G. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering R: Reports, 140, 100523. doi:10.1016/j.mser.2019.100523.

Muhammad Sayem, A. S., Hon Teay, S., Shahariar, H., Luise Fink, P., & Albarbar, A. (2020). Review on Smart Electro-Clothing Systems (SeCSs). Sensors, 20(3), 587. doi:10.3390/s20030587.

Lei, S., Xiangfang, R., Jianbin, W., Han, C., & Jianyong, O. (2022). Study on body area network of smart clothing for physiological monitoring. International Journal of Distributed Sensor Networks, 18(2), 1-14. doi:10.1177/15501477211061251.

Al Sayed, C., Vinches, L., & Hallé, S. (2017). Validation of a Wearable Biometric System’s Ability to Monitor Heart Rate in Two Different Climate Conditions under Variable Physical Activities. E-Health Telecommunication Systems and Networks, 06(02), 19–30. doi:10.4236/etsn.2017.62002.

Buregeya, J. M., Apparicio, P., & Gelb, J. (2020). Short-term impact of traffic-related particulate matter and noise exposure on cardiac function. International Journal of Environmental Research and Public Health, 17(4), 1220. doi:10.3390/ijerph17041220.

Baig, M. M., Gholamhosseini, H., Gutierrez, J., Ullah, E., & Lindén, M. (2021). Early Detection of Prediabetes and T2DM Using Wearable Sensors and Internet-of-Things-Based Monitoring Applications. Applied Clinical Informatics, 12(1), 1–9. doi:10.1055/s-0040-1719043.

Kumar, A., Levin, E., Cowings, P., & Toscano, W. B. (2015). Evaluation of the accuracy of Astroskin as a behavioral health self-monitoring system for spaceflight. Annual Summer STEM Internship Symposium, Salinas, United States.

Bains, N. (2020). Canadian Space Agency 2018–19. Departmental Results Report. Available online: https://www.asc-csa.gc.ca/eng/publications/drr-2018-2019.asp (accessed on August 2022).

Taj-Eldin, M., Ryan, C., O’Flynn, B., & Galvin, P. (2018). A Review of Wearable Solutions for Physiological and Emotional Monitoring for Use by People with Autism Spectrum Disorder and Their Caregivers. Sensors, 18(12), 4271. doi:10.3390/s18124271.

Nsanze, F. (2005). ICT implants in the human body-A review. The European Group on Ethics in Science and New Technologies to the European Commission 2005, Luxembourg.

Shafeie, S., Chaudhry, B. M., & Mohamed, M. (2022). Modeling Subcutaneous Microchip Implant Acceptance in the General Population: A Cross-Sectional Survey about Concerns and Expectations. Informatics, 9(1), 24. doi:10.3390/informatics9010024.

Ravisetti, M. (2022). Ax-1 Astronauts Headed to ISS Will Soon Wear Microgravity Brain-Tracking Helmets. CNET Your guide to a better future. Available online: https://www.cnet.com/science/space/ax-1-astronauts-headed-to-iss-will-soon-wear-microgravity-brain-tracking-helmets/ (accessed on August 2022).

Braided Communications. (2022). The future of deep space communication. Available online: https://braided.space/space-braiding/ (accessed on August 2022).

Fusar-Poli, P., Salazar de Pablo, G., De Micheli, A., Nieman, D. H., Correll, C. U., Kessing, L. V., Pfennig, A., Bechdolf, A., Borgwardt, S., Arango, C., & van Amelsvoort, T. (2020). What is good mental health? A scoping review. European Neuropsychopharmacology, 31, 33–46. doi:10.1016/j.euroneuro.2019.12.105.

Solmi, M., Dragioti, E., Arango, C., Radua, J.,…, Shin, J. Il, & Fusar-Poli, P. (2021). Risk and protective factors for mental disorders with onset in childhood/adolescence: An umbrella review of published meta-analyses of observational longitudinal studies. Neuroscience and Biobehavioral Reviews, 120, 565–573. doi:10.1016/j.neubiorev.2020.09.002.

Shucksmith, J., Spratt, J., Philip, K., & McNaughton, R. (2009). A critical review of the literature on children and young people’s views of the factors that influence their mental health. NHS Health Scotland, Edinburg, Scotland.

Fritz, J., de Graaff, A. M., Caisley, H., van Harmelen, A. L., & Wilkinson, P. O. (2018). A Systematic Review of Amenable Resilience Factors That Moderate and/or Mediate the Relationship Between Childhood Adversity and Mental Health in Young People. Frontiers in Psychiatry, 9, 230. doi:10.3389/fpsyt.2018.00230.

Alegría, M., NeMoyer, A., Falgàs Bagué, I., Wang, Y., & Alvarez, K. (2018). Social Determinants of Mental Health: Where We Are and Where We Need to Go. Current Psychiatry Reports, 20(11), 95. doi:10.1007/s11920-018-0969-9.

Bernardi, L. (2021). Mental Health and Political Representation: A Roadmap. Frontiers in Political Science, 2, 2020 587588. doi:10.3389/fpos.2020.587588.

Cromwell, R. L., Huff, J. L., Simonsen, L. C., & Patel, Z. S. (2021). Earth-Based Research Analogs to Investigate Space-Based Health Risks. New Space, 9(4), 204–216. doi:10.1089/space.2020.0048.

Farand, A. (2001). The code of conduct for international space station crews. ESA bulletin, 105, 64-68.

Kanas, N., Salnitskiy, V., Weiss, D. S., Grund, E. M., Gushin, V., Kozerenko, O., Sled, A., Bostrom, A., & Marmar, C. R. (2001). Crewmember and ground personnel interactions over time during Shuttle/Mir space missions. Aviation Space and Environmental Medicine, 72(5), 453–461.

Kanas, N. A., Salnitskiy, V. P., Boyd, J. E., Gushin, V. I., Weiss, D. S., Saylor, S. A., Kozerenko, O. P., & Marmar, C. R. (2007). Crewmember and mission control personnel interactions during international space station missions. Aviation Space and Environmental Medicine, 78(6), 601–607.

Boyd, J. E., Kanas, N. A., Salnitskiy, V. P., Gushin, V. I., Saylor, S. A., Weiss, D. S., & Marmar, C. R. (2009). Cultural differences in crewmembers and mission control personnel during two space station programs. Aviation Space and Environmental Medicine, 80(6), 532–540. doi:10.3357/ASEM.2430.2009.

Ponton, K., Parera, D., & Irons, J. (2021). The submarine habitability assessment questionnaire: A survey of RAN submariners. Journal of Marine Science and Engineering, 9(1), 1–31. doi:10.3390/jmse9010054.

Aufauvre-Poupon, C., Martin-Krumm, C., Duffaud, A., Lafontaine, A., Gibert, L., Roynard, F., Rouquet, C., Bouillon-Minois, J.-B., Dutheil, F., Canini, F., Pontis, J., Leclerq, F., Vannier, A., & Trousselard, M. (2021). Subsurface Confinement: Evidence from Submariners of the Benefits of Mindfulness. Mindfulness, 12(9), 2218–2228. doi:10.1007/s12671-021-01677-7.

Mohanty, S., Jørgensen, J., & Nyström, M. (2006). Psychological Factors Associated with Habitat Design for Planetary Mission Simulators. Space 2006. doi:10.2514/6.2006-7345.

Landon, L. B., Slack, K. J., & Barrett, J. D. (2018). Teamwork and collaboration in long-duration space missions: Going to extremes. American Psychologist, 73(4), 563–575. doi:10.1037/amp0000260.

Flinders, L., Grainger, J., Rich, B.J, Clark, H., Braddock, M. (2022). Design architecture for 3D printing a Lunar habitat. ROOM Space Journal of Asgardia, 1(31), 90-97.

Tootell, R. B. H., Zapetis, S. L., Babadi, B., Nasiriavanaki, Z., Hughes, D. E., Mueser, K., Otto, M., Pace-Schott, E., & Holt, D. J. (2021). Psychological and physiological evidence for an initial ‘Rough Sketch’ calculation of personal space. Scientific Reports, 11(1), 20960. doi:10.1038/s41598-021-99578-1.

Hambuchen, K., Marquez, J., & Fong, T. (2021). A Review of NASA Human-Robot Interaction in Space. Current Robotics Reports, 2(3), 265–272. doi:10.1007/s43154-021-00062-5.

Chen, H., & Breazeal, C. (2021). Toward Designing Social Human-Robot Interactions for Deep Space Exploration. arXiv preprint arXiv:2105.08631. doi:10.48550/arXiv.2105.08631.

Jiang, Z., Cao, X., Huang, X., Li, H., & Ceccarelli, M. (2022). Progress and Development Trend of Space Intelligent Robot Technology. Space: Science & Technology, 2022, 1–11. doi:10.34133/2022/9832053.

Orzech, G. (2022). Intelligent systems division. National Aeronautics and Space Administration, NASA. Available online: https://www.nasa.gov/intelligent-systems-division (accessed on May 2022).

Manca, D., Nazir, S., Komulainen, T., & Øvergård, K. I. (2016). How extreme environments can impact the training of industrial operators. Chemical Engineering Transactions, 53, 193–198. doi:10.3303/CET1653033.

Xi, Z., Li, C., Zhou, L., Yang, H., & Burghardt, R. (2022). Built environment influences on urban climate resilience: Evidence from extreme heat events in Macau. Science of The Total Environment, 160270. doi:10.1016/j.scitotenv.2022.160270.

Waring, S. (2019). Using live disaster exercises to study large multiteam systems in extreme environments: Methodological and measurement fit. Organizational Psychology Review, 9(4), 219–244. doi:10.1177/2041386619892262.

Prysyazhnyuk, A., McGregor AM, C. (2022). Space as an Extreme Environment—Galactic Adventures: Exploring the Limits of Human Mind and Body, One Planet at a Time. Engineering and Medicine in Extreme Environments, Springer, Cham, Switzerland. doi:10.1007/978-3-030-96921-9_7.

Markopoulos, E., & Vanharanta, H. (2018). Project teaming in a democratic company context. Theoretical Issues in Ergonomics Science, 19(6), 673–691. doi:10.1080/1463922X.2018.1439543.

Vanharanta, H., & Markopoulos, E. (2019). The applied philosophy concept for management and leadership objects through the Company Democracy Model. Theoretical Issues in Ergonomics Science, 20(2), 178–195. doi:10.1080/1463922X.2018.1510060.

Luca, P., Valter, B., Lorenzo, R., Mauro, P., Christian, B., Manuela, M., Carlo, V., Maurizio, L., Michela, B., Filippo, R., Massimo, R., Eleonora, M., & Michele, C. (2012). Virtual Simulation of Hostile Environments for Space Industry: From Space Missions to Territory Monitoring. Virtual Reality - Human Computer Interaction, Intechopen, London, United Kingdom. doi:10.5772/51121.

Stepanova, E. R., Quesnel, D., & Riecke, B. E. (2019). Space—A Virtual Frontier: How to Design and Evaluate a Virtual Reality Experience of the Overview Effect. Frontiers in Digital Humanities, 6, 2019 00007. doi:10.3389/fdigh.2019.00007.

Wenz, J. (2018). Making outer space smell like fresh cut grass. DISCOVER. Available online https://www.discovermagazine.com/the-sciences/making-outer-space-smell-like-fresh-cut-grass (accessed on August 2022).

Di Bucchianico, G. (2015). Design for human diversity in the maritime design domain. Theoretical Issues in Ergonomics Science, 16(4), 388–398. doi:10.1080/1463922X.2015.1014070.

Di Nicolantonio, M., Di Bucchianico, G., Camplone, S., & Vallicelli, A. (2015). The visual pleasantness in yacht design: natural lighting, views and interior colours. Theoretical Issues in Ergonomics Science, 16(4), 399–411. doi:10.1080/1463922X.2014.1003992.

Tanaka, K., Nishimura, N., & Kawai, Y. (2017). Adaptation to microgravity, deconditioning, and countermeasures. Journal of Physiological Sciences, 67(2), 271–281. doi:10.1007/s12576-016-0514-8.

Cahill, B., & Braddock, M. (2022). Back to the Future: The Rise of Human Enhancement and Potential Applications for Space Missions. Studia Humana, 11(1), 17–21. doi:10.2478/sh-2022-0002.

Zubrin, R. (2018). The Economic Viability of Mars Colonization. Deep Space Commodities, Palgrave Macmillan, Cham, Switzerland. doi:10.1007/978-3-319-90303-3_12.

Cohn, J. V., & Mutai, J. C. (2019). Introduction to the thematic issue on valuing research: theory, research, policy and practice of return on investment. Theoretical Issues in Ergonomics Science, 20(1), 1–3. doi:10.1080/1463922X.2018.1526350.

Dastagiri, M.B., (2017). The Theory and Economics of MARS and MOON Colonization: Steps and Policy Advocacy. European Scientific Journal, ESJ, 13(28), 239. doi:10.19044/esj.2017.v13n28p239.

National Aeronautics and Space Administration (2019). How Investing in the Moon Prepares NASA for First Human Mission to Mars, NASA. Available online: https://www.nasa.gov/sites/default/files/atoms/files/moon-investments-prepare-us-for-mars.pdf (accessed on August 2022).

NASA. (2019). NASA Economic Impact Report—FY19. National Aeronautics and Space Administration, NASA. Available online: https://www.nasa.gov/sites/default/files/atoms/files/2020_nasa_eir_brochure_for_fy19.pdf (accessed on June 2022).

Gasda, P. J., Haldeman, E. B., Wiens, R. C., Rapin, W., Bristow, T. F., … , Bodine, M. R., & McInroy, R. (2017). In situ detection of boron by ChemCam on Mars. Geophysical Research Letters, 44(17), 8739–8748. doi:10.1002/2017GL074480.

Brasser, R., & Mojzsis, S. J. (2017). A colossal impact enriched Mars’ mantle with noble metals. Geophysical Research Letters, 44(12), 5978–5985. doi:10.1002/2017GL074002.

Cockell, C. S., Santomartino, R., Finster, K., Waajen, A. C., … Demets, R. (2020). Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nature Communications, 11(1). doi:10.1038/s41467-020-19276-w.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-03-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Martin Braddock