Enhancing Business Efficiency through Low-Code/No-Code Technology Adoption: Insights from an Extended UTAUT Model

Siti Fatimah Abdul Razak, Yow Phey Ernn, Farah Izzati Yussoff, Umar Ali Bukar, Sumendra Yogarayan


The growing need for new applications and software has driven developers to seek quick development options. As a result, the low-code/no-code technology platform emerges as a potential option, leading to the adoption of low-code and no-code technologies in enterprises becoming a focus of inquiry. This study aims to examine users' behavioral intentions toward the adoption of the low-code/no-code technology platform, considering the increasing need for new applications. The Extended Unified Theory of Acceptance and Use of Technology (UTAUT) model serves as the theoretical framework for understanding the factors influencing individuals’ intentions to adopt low-code or no-code technologies. The study focused on the five key components of the model: Performance Expectation (PE), Effort Expectation (EE), Social Influence (SI), Perceived Risk (PR), and Perceived Cost (PC). Based on the surveys and data analysis techniques, the findings show relationship between these five categories with an individual's Behavioral Intention (BI) to adopt low-code/no-code technologies. Furthermore, the analysis identifies the most significant BI construct. These findings are beneficial to businesses seeking to enhance efficiency and expedite application development processes in response to increasing digital demands. In general, this study contributes to the topic of technology adoption and improves our understanding of the practicality of the Extended UTAUT model.


Doi: 10.28991/HEF-2024-05-01-07

Full Text: PDF


Low Code/No Code; Extended UTAUT; Business Technology; Technology Adoption.


Tisi, M., Mottu, J. M., Kolovos, D. S., de Lara, J., Guerra, E., Di Ruscio, D., Pierantonio, A., & Wimmer, M. (2019). Lowcomote: Training the next generation of experts in scalable low-code engineering platforms. CEUR Workshop Proceedings, 2405, 1-6.

Woo, M. (2020). The Rise of No/Low Code Software Development - No Experience Needed? Engineering, 6(9), 960–961. doi:10.1016/j.eng.2020.07.007.

Jesse, N. (2019). Agility eats legacy-the long good-bye. IFAC-PapersOnLine, 52(25), 154–158. doi:10.1016/j.ifacol.2019.12.464.

Prinz, N., Rentrop, C., & Huber, M. (2021). Low-Code Development Platforms-A Literature Review. Americas Conference on Information Systems (AMCIS) 2021 Proceedings, 1–11.

Türker, C., Altay, B. C., & Okumuş, A. (2022). Understanding user acceptance of QR code mobile payment systems in Turkey: An extended TAM. Technological Forecasting and Social Change, 184. doi:10.1016/j.techfore.2022.121968.

OutSystems. (2019). The State of Application Development Is IT Ready for Disruption?. Algés, Portugal. Available online: https://www.outsystems.com/local-gov/-/media/053D5BCC32364C2993C8D0BAFA880DB1.ashx (accessed on May 2023).

Google Inc. (2023). Google AppSheet: The fastest way to build apps and automate work. Available online: https://about.appsheet.com/home/ (accessed on May 2023).

Mendix (2023). Welcome to Mendix Docs: Conquer Complexity with Mendix. London, United Kingdom. Available online: https://docs.mendix.com/?_gl=1*14nl6v8*_ga*Mzc1NzE1MDc4LjE2OTE2NTA2OTg.*_ga_4PE2C4QFC7*MTY5MTY1MjcwMy4yLjEuMTY5MTY1MjcwNi41Ny4wLjA. (accessed on May 2023).

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting the understanding and comparison of low-code development platforms. Proceedings - 46th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2020, 171–178. doi:10.1109/SEAA51224.2020.00036.

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021). Characteristics and challenges of low-code development: The practitioner’s perspective. International Symposium on Empirical Software Engineering and Measurement, 12, 1-11. doi:10.1145/3475716.3475782.

Bucaioni, A., Cicchetti, A., & Ciccozzi, F. (2022). Modelling in low-code development: a multi-vocal systematic review. Software and Systems Modeling, 21(5), 1959–1981. doi:10.1007/s10270-021-00964-0.

Al Alamin, M. A., Malakar, S., Uddin, G., Afroz, S., Haider, T. Bin, & Iqbal, A. (2021). An empirical study of developer discussions on low-code software development challenges. Proceedings - IEEE/ACM 18th International Conference on Mining Software Repositories, MSR 2021, 46–57. doi:10.1109/MSR52588.2021.00018.

Rokis, K., & Kirikova, M. (2023). Exploring Low-Code Development: A Comprehensive Literature Review. Complex Systems Informatics and Modeling Quarterly, 2023(36), 68–86. doi:10.7250/csimq.2023-36.04.

Kirchhoff, J., Weidmann, N., Sauer, S., & Engels, G. (2022). Situational development of low-code applications in manufacturing companies. Proceedings - ACM/IEEE, 25th International Conference on Model Driven Engineering Languages and Systems, MODELS 2022: Companion Proceedings, 816–825. doi:10.1145/3550356.3561560.

Hoogsteen, D., & Borgman, H. (2022). Empower the Workforce, Empower the Company? Citizen Development Adoption. Proceedings of the Annual Hawaii International Conference on System Sciences, 4717–4726. doi:10.24251/hicss.2022.575.

Khorram, F., Mottu, J. M., & Sunyé, G. (2020). Challenges & opportunities in low-code testing. Proceedings - 23rd ACM / IEEE International Conference on Model Driven Engineering Languages and Systems, Companion Proceedings, 490–499. doi:10.1145/3417990.3420204.

Iho, S., Krejci, D., & Missonier, S. (2021). Supporting Knowledge Integration with Low-Code Development Platforms. AIS Electronic Library (AISeL), ECIS 2021 Research Papers, 38, 1-17.

Rafi, S., Akbar, M. A., Sánchez-Gordón, M., & Colomo-Palacios, R. (2022). DevOps Practitioners’ Perceptions of the Low-code Trend. International Symposium on Empirical Software Engineering and Measurement, September 2022, 301–306. doi:10.1145/3544902.3546635.

Rokis, K., & Kirikova, M. (2022). Challenges of Low-Code/No-Code Software Development: A Literature Review. In Lecture Notes in Business Information Processing: Vol. 462 LNBIP, 3–17. doi:10.1007/978-3-031-16947-2_1.

Sahay, A., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2023). Analyzing business process management capabilities of low-code development platforms. Software - Practice and Experience, 53(4), 1036–1060. doi:10.1002/spe.3177.

Bock, A. C., & Frank, U. (2021). In Search of the Essence of Low-Code: An Exploratory Study of Seven Development Platforms. Companion Proceedings - 24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021, 57–66. doi:10.1109/MODELS-C53483.2021.00016.

Käss, S. (2022). Low Code Development Platform Adoption: A Research Model. ACIS 2022 - Australasian Conference on Information Systems, Proceedings, AIS Electronic Library (AISeL), 1-9.

Kass, S., Strahringer, S., & Westner, M. (2022). Drivers and Inhibitors of Low Code Development Platform Adoption. Proceedings. IEEE 24th Conference on Business Informatics, CBI 2022, 1, 196–205. doi:10.1109/CBI54897.2022.00028.

Kass, S., Strahringer, S., & Westner, M. (2023). Practitioners’ Perceptions on the Adoption of Low Code Development Platforms. IEEE Access, 11, 29009–29034. doi:10.1109/ACCESS.2023.3258539.

Silva, J., Lopes, M., Avelino, G., & Neto, P. S. (2023). Low-code and No-code Technologies Adoption: A Gray Literature Review. ACM International Conference Proceeding Series, 388–395. doi:10.1145/3592813.3592929.

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2020). Low-code as enabler of digital transformation in manufacturing industry. Applied Sciences (Switzerland), 10(1), 12. doi:10.3390/app10010012.

Thacker, D., Kaur, V., Blundell, G., Thacker, D., & Berardi, V. (2020). Assessing Technological Self-Conception: Are Business Students Ready to be Citizen Developers? 2020 Proceedings of the EDSIG Conference, 1–19.

McHugh, S., Carroll, N., & Connolly, C. (2023). Low-Code and No-Code in Secondary Education—Empowering Teachers to Embed Citizen Development in Schools. Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research, 1-26. doi:10.1080/07380569.2023.2256729.

AlSharji, A., Ahmad, S. Z., & Abu Bakar, A. R. (2018). Understanding social media adoption in SMEs: Empirical evidence from the United Arab Emirates. Journal of Entrepreneurship in Emerging Economies, 10(2), 302–328. doi:10.1108/JEEE-08-2017-0058.

Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960–967. doi:10.1016/j.promfg.2018.03.137.

Al-Mamary, Y. H., Al-nashmi, M., Hassan, Y. A. G., & Shamsuddin, A. (2016). A Critical Review of Models and Theories in Field of Individual Acceptance of Technology. International Journal of Hybrid Information Technology, 9(6), 143–158. doi:10.14257/ijhit.2016.9.6.13.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. doi:10.2307/41410412.

Momani, A. M., Jamous, M. M., & Hilles, S. M. S. (2018). Technology Acceptance Theories. Technology Adoption and Social Issues, 1–16. doi:10.4018/978-1-5225-5201-7.ch001.

Alghatrifi, I., & Khalid, H. (2019). A systematic review of UTAUT and UTAUT2 as a baseline framework of information system research in adopting new technology: A case study of IPV6 adoption. International Conference on Research and Innovation in Information Systems, ICRIIS, December-2019. doi:10.1109/ICRIIS48246.2019.9073292.

Gupta, K. P., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: extending UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173–195. doi:10.1108/JABS-07-2017-0111.

Rahman, F. B., Hanafiah, M. H. M., Zahari, M. S. M., & Jipiu, L. B. (2021). Systematic Literature Review on The Evolution of Technology Acceptance and Usage Model used in Consumer Behavioural Study. International Journal of Academic Research in Business and Social Sciences, 11(13), 272-298. doi:10.6007/ijarbss/v11-i13/8548.

Lim, W. M. (2018). Dialectic antidotes to critics of the technology acceptance model: Conceptual, methodological, and replication treatments for behavioural modelling in technology-mediated environments. Australasian Journal of Information Systems, 22. doi:10.3127/ajis.v22i0.1651.

Chopdar, P. K., Lytras, M. D., & Visvizi, A. (2023). Exploring factors influencing bicycle-sharing adoption in India: a UTAUT 2 based mixed-method approach. International Journal of Emerging Markets, 18(11), 5109–5134. doi:10.1108/IJOEM-06-2021-0862.

Alsaadi, H. A., Radain, D. T., Alzahrani, M. M., Alshammari, W. F., Alahmadi, D., & Fakieh, B. (2021). Factors that affect the utilization of low-code development platforms: survey study. Revista Română de Informatică Și Automatică, 31(3), 123–140. doi:10.33436/v31i3y202110.

Torrisi, V., Ignaccolo, M., Inturri, G., Tesoriere, G., & Campisi, T. (2021). Exploring the factors affecting bike-sharing demand: Evidence from student perceptions, usage patterns and adoption barriers. Transportation Research Procedia, 52, 573-580. doi:10.1016/j.trpro.2021.01.068.

Ikhsan, R. B., Prabowo, H., Yuniarty, & Simamora, B. (2021). The Used of UTAUT-2 in examining the usage of mobile-LMS Binus Online Learning. Proceedings of 2021 International Conference on Information Management and Technology, ICIMTech 2021, 443–447. doi:10.1109/ICIMTech53080.2021.9535053.

Ikhsan, R. B., Sudirman, E., Andaresta, D., Helen, Pradhani, R. A., & Hardiyansyah. (2022). The Implementation of UTAUT-2 in Cashback Program on E-Commerce Platform. 5th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2022, 71–76. doi:10.1109/ISRITI56927.2022.10053074.

Yu, C. W., Chao, C. M., Chang, C. F., Chen, R. J., Chen, P. C., & Liu, Y. X. (2021). Exploring Behavioral Intention to Use a Mobile Health Education Website: An Extension of the UTAUT 2 Model. SAGE Open, 11(4), 1-12. doi:10.1177/21582440211055721.

Huang, C. Y., & Kao, Y. S. (2015). UTAUT2 Based Predictions of Factors Influencing the Technology Acceptance of Phablets by DNP. Mathematical Problems in Engineering, 603747. doi:10.1155/2015/603747.

Loureiro, S. M. C., Cavallero, L., & Miranda, F. J. (2018). Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth. Journal of Retailing and Consumer Services, 41, 131–141. doi:10.1016/j.jretconser.2017.12.005.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222. doi:10.1287/isre.2.3.192.

Ben Arfi, W., Ben Nasr, I., Khvatova, T., & Ben Zaied, Y. (2021). Understanding acceptance of eHealthcare by IoT natives and IoT immigrants: An integrated model of UTAUT, perceived risk, and financial cost. Technological Forecasting and Social Change, 163. doi:10.1016/j.techfore.2020.120437.

Bhatnagr, P., & Rajesh, A. (2023). Neobanking adoption – An integrated UTAUT-3, perceived risk and recommendation model. South Asian Journal of Marketing, 1-20. doi:10.1108/sajm-06-2022-0040.

Fanea-Ivanovici, M., & Baber, H. (2021). The Role of Entrepreneurial Intentions, Perceived Risk and Perceived Trust in Crowdfunding Intentions. Engineering Economics, 32(5), 433–445. doi:10.5755/J01.EE.32.5.29300.

Ivanova, A., & Yeon Kim, J. (2022). Acceptance and Use of Mobile Banking in Central Asia: Evidence from Modified UTAUT Model. Journal of Asian Finance, 9(2), 217–0227. doi:10.13106/jafeb.2022.vol9.no2.0217.

Wei, T. T., Marthandan, G., Chong, A. Y. L., Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m-commerce adoption? An empirical analysis. Industrial Management and Data Systems, 109(3), 370–388. doi:10.1108/02635570910939399.

Tiwari, P. (2020). Measuring the Impact of Students" Attitude towards Adoption of Online Classes during COVID 19: Integrating UTAUT Model with Perceived Cost. TEST Engineering & Management, 8(1), 8374–8382.

Gao, T., & Deng, Y. (2012). A study on users’ acceptance behavior to mobile e-books application based on UTAUT model. ICSESS 2012 - Proceedings of 2012 IEEE 3rd International Conference on Software Engineering and Service Science, 376–379. doi:10.1109/ICSESS.2012.6269483.

Schreiber, J. B. (2021). Issues and recommendations for exploratory factor analysis and principal component analysis. Research in Social and Administrative Pharmacy, 17(5), 1004–1011. doi:10.1016/j.sapharm.2020.07.027.

Hair Jr, J., Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, California, United States.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi:10.1108/EBR-11-2018-0203.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.

Chin, W.W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research. Statistical Strategies for Small Sample Research, 295-336.

Cortina, J. M. (1993). What Is Coefficient Alpha? An Examination of Theory and Applications. Journal of Applied Psychology, 78(1), 98–104. doi:10.1037/0021-9010.78.1.98.

Jafari, M., & Ansari-Pour, N. (2019). Why, when and how to adjust your P values? Cell Journal, 20(4), 604–607. doi:10.22074/cellj.2019.5992.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. doi:10.2753/MTP1069-6679190202.

Full Text: PDF

DOI: 10.28991/HEF-2024-05-01-07


  • There are currently no refbacks.

Copyright (c) 2024 Phey Ernn Yow, Siti Fatimah Abdul Razak, Farah Izzati Yussoff, Sumendra Yogarayan