Enhancing Magnetotelluric Data Quality Using Deep Learning-Based Denoising Models: A Study of CNN and LSTM
Downloads
Noise interference in Magnetotelluric (MT) signals significantly undermines the accuracy of subsurface resistivity analysis, leading to potential errors in geophysical interpretation and challenges in resource exploration. To address this critical issue, this study develops denoising models based on Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) to enhance the quality of MT signals while preserving their original structure. The proposed models utilize MT data, incorporating electric field (E) and magnetic field (H) components, to effectively reduce noise. Evaluation results demonstrate that CNN outperforms LSTM, increasing the Signal-to-Noise Ratio (SNR) by up to 58.8% (or 1.6 times) in the Hx channel. CNN also records lower Normalized Mean Square Error (NMSE) values across all channels, ranging from 0.006 to 0.033, while maintaining a high correlation coefficient of 0.999 in the Hz channel. Moreover, CNN is significantly faster, with processing times of 24.83 to 29.16 seconds—up to three times faster than LSTM, which requires 67.38 to 70.69 seconds. The superior performance of CNN in mitigating noise in MT data is attributed to its architecture, which focuses on local patterns. This makes it particularly effective for handling localized and sporadic noise, as observed in the Hx and Hy channels with recurring amplitude patterns. In contrast, LSTM is less effective for MT data with unstructured noise, such as in the Hz channel, due to its sequential approach, which is better suited for capturing long-term temporal relationships. This study aligns with the Sustainable Development Goals (SDGs), specifically SDG 9, which promotes innovative applications of deep learning technology, and SDG 7, which emphasizes improving the accuracy of renewable energy exploration. The findings provide a foundation for developing more adaptive and efficient denoising models, contributing to environmental sustainability and the advancement of clean energy exploration in the future.
Downloads
[1] Afshar, A., Norouzi, G. H., & Moradzadeh, A. (2023). Exploring Geothermal Potential through Multi-Modal Geophysical Data Integration: Gravity, Magnetic, and Magnetotelluric Prospecting. International Journal of Mining and Geo-Engineering, 57(4), 427–434. doi:10.22059/ijmge.2023.364057.595093.
[2] Saibi, H., Khosravi, S., Cherkose, B. A., Smirnov, M., Kebede, Y., & Fowler, A. R. (2021). Magnetotelluric data analysis using 2D inversion: A case study from Al-Mubazzarah Geothermal Area (AMGA), Al-Ain, United Arab Emirates. Heliyon, 7(6), e7440. doi:10.1016/j.heliyon.2021.e07440.
[3] Love, J. J., Lucas, G. M., Rigler, E. J., Murphy, B. S., Kelbert, A., & Bedrosian, P. A. (2022). Mapping a Magnetic Superstorm: March 1989 Geoelectric Hazards and Impacts on United States Power Systems. Space Weather, 20(5), e2021SW003030. doi:10.1029/2021SW003030.
[4] Klanica, R., Pek, J., & Hill, G. (2023). Magnetotelluric Power Line Noise Removal Using Temporally Varying Sinusoidal Subtraction of the Grid Utility Frequency. Pure and Applied Geophysics, 180(9), 3303–3317. doi:10.1007/s00024-023-03323-w.
[5] Yun, Z., An, Z., Di, Q., Zhang, Y., Liang, P., Fu, C., Yun, Z., An, Z., Di, Q., Zhang, Y., Liang, P., Fu, C., Yun, Z., An, Z., Di, Q., Zhang, Y., Liang, P., & Fu, C. (2024). Lithospheric electrical structure and geodynamic model of the red river fault zone and its adjacent areas in southwest China: Constraints from 3-D magnetotelluric imaging. Journal of Asian Earth Sciences, 273(June), 106257. doi:10.1016/j.jseaes.2024.106257.
[6] Guo, Z., Han, J., Liu, L., Wu, Y., Hou, J., & Gong, X. (2024). Reducing Reliance on Observation Duration of Magnetotelluric Impedance Estimation with an Improved Instantaneous Spectrum-Based Method. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–15. doi:10.1109/TGRS.2024.3386646.
[7] Balasco, M., Lapenna, V., Rizzo, E., & Telesca, L. (2022). Deep Electrical Resistivity Tomography for Geophysical Investigations: The State of the Art and Future Directions. Geosciences (Switzerland), 12(12), 438. doi:10.3390/geosciences12120438.
[8] Strack, K., Paembonan, A. Y., Davydycheva, S., & Hanstein, T. (2022). An Array Multi-Physics Acquisition System with Focus on Reservoir Monitoring for the Energy Transition. Earth & Environmental Science Research & Reviews, 5(4), 8. doi:10.33140/eesrr.05.04.08.
[9] Triahadini, A., Aizawa, K., Hashimoto, T. M., Chiba, K., Uchida, K., Yamamoto, Y., Miyano, K., Muramatsu, D., Aniya, S., Okubo, A., & Kawamura, Y. (2023). Magma transport along structural boundaries in the upper crust: insights from broad-band magnetotelluric constraints on the structure beneath Unzen volcano, Japan. Geophysical Journal International, 234(2), 1268–1281. doi:10.1093/gji/ggad126.
[10] Zhang, L., Ren, Z., Xiao, X., Tang, J., & Li, G. (2022). Identification and Suppression of Magnetotelluric Noise via a Deep Residual Network. Minerals, 12(6), 766. doi:10.3390/min12060766.
[11] Egbert, G. D. (1997). Robust multiple-station magnetotelluric data processing. Geophysical Journal International, 130(2), 475–496. doi:10.1111/j.1365-246X.1997.tb05663.x.
[12] Clarke, J., Gamble, T. D., Goubau, W. M., Koch, R. H., & Miracky, R. (1983). Remote‐reference magnetotellurics: Equipment and procedures. Geophysical Prospecting, 31(1), 149-170.
[13] Usui, Y., Uyeshima, M., Sakanaka, S., Hashimoto, T., Ichiki, M., Kaida, T., Yamaya, Y., Ogawa, Y., Masuda, M., & Akiyama, T. (2024). New robust remote reference estimator using robust multivariate linear regression. Geophysical Journal International, 238(2), 943–959. doi:10.1093/gji/ggae199.
[14] Widodo, A., Lestari, W., Warnana, D. D., Syaifuddin, F., Rivensky, R. S., & Ilmawan, R. Z. (2021). Analysis of the effect of magnetotelluric data quality improvement using rho variance and edit XPR parameters in densely populated areas. IOP Conference Series: Earth and Environmental Science, 851(1), 012003. doi:10.1088/1755-1315/851/1/012003.
[15] Zhan, Q., Liu, Y., Liu, C., & Zhao, P. (2025). A Novel Decomposition-Enhanced Denoising Method for Magnetotelluric Data Based on AMSE-REWT in the Time–Frequency Domain. IEEE Transactions on Geoscience and Remote Sensing, 63. doi:10.1109/TGRS.2025.3531497.
[16] Zhou, R., Han, J., Guo, Z., & Li, T. (2021). De-noising of magnetotelluric signals by discrete wavelet transform and SVD decomposition. Remote Sensing, 13(23), 4932. doi:10.3390/rs13234932.
[17] Li, G., Liu, X., Tang, J., Li, J., Ren, Z., & Chen, C. (2020). De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation. Journal of Applied Geophysics, 172, 103919. doi:10.1016/j.jappgeo.2019.103919.
[18] Wang, P., Chen, X., & Zhang, Y. (2023). Synthesizing magnetotelluric time series based on forward modeling. Frontiers in Earth Science, 11(February), 1–13. doi:10.3389/feart.2023.1086749.
[19] Yang, Y., Zhang, H., Zhu, Y., Zhou, C., & Sun, H. (2023). Denoising land-based controlled-source electromagnetic data based on a same-site noise reference channel. Geophysical Journal International, 235(3), 2285–2304. doi:10.1093/gji/ggad361.
[20] Bergen, K. J., Johnson, P. A., de Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433), eaau0323. doi:10.1126/science.aau0323.
[21] Dramsch, J. S. (2020). 70 Years of Machine Learning in Geoscience in Review. Advances in Geophysics, 61(January), 1–55. doi:10.1016/bs.agph.2020.08.002.
[22] Rau, E. G. (2022). Application of Machine Learning and Magnetotellurics to Aid in Subsurface Characterization of Petroleum and Geothermal Reservoirs. Doctoral dissertation, Baylor University, Texas, United States.
[23] Marzan, I., Martí, D., Lobo, A., Alcalde, J., Ruiz, M., Alvarez-Marron, J., & Carbonell, R. (2021). Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain). Engineering Geology, 288(August 2020), 106126. doi:10.1016/j.enggeo.2021.106126.
[24] Utama, W., Indriani, R. F., Hermana, M., Anjasmara, I. M., Garini, S. A., & Putra, D. P. N. (2024). Towards Improving Sustainable Water Management in Geothermal Fields: SVM and RF Land Use Monitoring. Journal of Human, Earth, and Future, 5(2), 216–242. doi:10.28991/HEF-2024-05-02-06.
[25] Abbasi, F. A., Sajjad, A., Ayubi, M., Haider, G., Lalji, S. M., Ali, S. I., & Burney, M. (2024). Predicting permeability in sandstone reservoirs from mercury injection capillary pressure data using advanced machine learning algorithms. Arabian Journal of Geosciences, 17(12), 1–18. doi:10.1007/s12517-024-12145-6.
[26] Li, J., Liu, Y., Tang, J., & Ma, F. (2023). Magnetotelluric noise suppression via convolutional neural network. Geophysics, 88(1), WA361–WA375. doi:10.1190/geo2022-0258.1.
[27] Pichika, S. V. V. S. N., Chaitanya, M. Y., Rajasekharan, S. G., & Yadav, R. (2023). Comparison of noise reduction performance of denoising autoencoders with CNN and LSTM. AIP Conference Proceedings, 2715, 1–5. doi:10.1063/5.0134232.
[28] Legowo, N., & Bad, W. M. (2024). Outlier Detection in VPN Authentication Logs for Corporate Computer Networks Access using CRISP-DM. HighTech and Innovation Journal, 5(4), 1101-1117. doi:10.28991/HIJ-2024-05-04-016.
[29] Chen, J., Du, L., Guo, G., Yin, L., & Wei, D. (2022). Target-attentional CNN for Radar Automatic Target Recognition with HRRP. Signal Processing, 196, 108497. doi:10.1016/j.sigpro.2022.108497.
[30] Yu, N., Ji, M., Zhang, C., Ye, Y., & Zhou, W. (2025). A novel frequency-division deep-learning approach for magnetotelluric data quality enhancement. Geophysics, 90(3), WA169–WA187. doi:10.1190/geo2024-0451.1.
[31] Li, G., Gu, X., Chen, C., Zhou, C., Xiao, D., Wan, W., & Cai, H. (2024). Low-Frequency Magnetotelluric Data Denoising Using Improved Denoising Convolutional Neural Network and Gated Recurrent Unit. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–16. doi:10.1109/TGRS.2024.3374950.
[32] Liu, Z., Chen, H., Ren, Z., Tang, J., Xu, Z., Chen, Y., & Liu, X. (2021). Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network. Journal of Applied Geophysics, 188, 104309. doi:10.1016/j.jappgeo.2021.104309.
[33] Pal, U., Chattopadhyay, P. B., Sarraf, Y., & Halder, S. (2025). Optimizing noise reduction in layered-earth magnetotelluric data for generating smooth models with artificial neural networks. Acta Geophysica, 73(2), 1449–1479. doi:10.1007/s11600-024-01434-z.
[34] Li, J., Cheng, H., Wang, J., Zhang, X., & Tang, J. (2024). Coordinate Attention-Temporal Convolutional Network for Magnetotelluric Data Processing. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–14. doi:10.1109/TGRS.2024.3418042.
[35] Wan, S. (2024). A Denoising Time Window Algorithm for Optimizing LSTM Prediction. IEEE Access, 12(March), 74268–74290. doi:10.1109/ACCESS.2024.3404456.
[36] Gui, T., Deng, J., Li, G., Chen, H., Yu, H., & Feng, M. (2024). De-noising magnetotelluric data based on machine learning. Journal of Applied Geophysics, 230(March), 105538. doi:10.1016/j.jappgeo.2024.105538.
[37] Ji, M., Chen, H., Zhang, C., Yu, N., & Kong, W. (2024). A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–13. doi:10.1109/TGRS.2024.3401194.
[38] Vozar, J., Jones, A. G., Campanya, J., Yeomans, C., Muller, M. R., & Pasquali, R. (2020). A geothermal aquifer in the dilation zones on the southern margin of the Dublin Basin. Geophysical Journal International, 220(3), 1717–1734. doi:10.1093/gji/ggz530.
[39] Aizawa, K., Koyama, T., Hase, H., Uyeshima, M., Kanda, W., Utsugi, M., Yoshimura, R., Yamaya, Y., Hashimoto, T., Yamazaki, K., Komatsu, S., Watanabe, A., Miyakawa, K., & Ogawa, Y. (2014). Three-dimensional resistivity structure and magma plumbing system of the Kirishima Volcanoes as inferred from broadband magnetotelluric data. Journal of Geophysical Research: Solid Earth, 119(1), 198–215. doi:10.1002/2013JB010682.
[40] Puppala, H., Saikia, P., Kocherlakota, P., & Suriapparao, D. V. (2023). Evaluating the applicability of neural network to determine the extractable temperature from a shallow reservoir of Puga geothermal field. International Journal of Thermofluids, 17(November 2022), 100259. doi:10.1016/j.ijft.2022.100259.
[41] Li, Y., Li, T., Chen, H., & Li, X. (2022). Design of intelligent monitoring and management software for Taiwan-level drop-out fuse. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 10, 1528-1531. doi:10.1109/ITAIC54216.2022.9836496.
[42] Ebtehaj, I., & Bonakdari, H. (2024). CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks. Atmosphere, 15(9), 1082. doi:10.3390/atmos15091082.
[43] Zhen, L., & Bărbulescu, A. (2024). Comparative Analysis of Convolutional Neural Network-Long Short-Term Memory, Sparrow Search Algorithm-Backpropagation Neural Network, and Particle Swarm Optimization-Extreme Learning Machine Models for the Water Discharge of the Buzău River, Romania. Water (Switzerland), 16(2), 289. doi:10.3390/w16020289.
[44] Zuo, G., Ren, Z., Xiao, X., Tang, J., Zhang, L., & Li, G. (2022). Magnetotelluric Noise Attenuation Using a Deep Residual Shrinkage Network. Minerals, 12(9), 1086. doi:10.3390/min12091086.
[45] Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. doi:10.1016/j.asoc.2019.105524.
[46] Li, J., Liu, Y., Tang, J., Peng, Y., Zhang, X., & Li, Y. (2023). Magnetotelluric data denoising method combining two deep-learning-based models. Geophysics, 88(1), E13–E28. doi:10.1190/geo2021-0449.1.
[47] Pavlatos, C., Makris, E., Fotis, G., Vita, V., & Mladenov, V. (2023). Enhancing Electrical Load Prediction Using a Bidirectional LSTM Neural Network. Electronics (Switzerland), 12(22), 1–13. doi:10.3390/electronics12224652.
[48] Priyanka, Kumari, A., & Sood, M. (2021). Implementation of SimpleRNN and LSTMs based prediction model for coronavirus disease (Covid-19). IOP Conference Series: Materials Science and Engineering, 1022(1), 012015. doi:10.1088/1757-899X/1022/1/012015.
[49] Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. doi:10.1007/s10462-020-09838-1.
[50] Ghimire, S., Deo, R. C., Wang, H., Al-Musaylh, M. S., Casillas-Pérez, D., & Salcedo-Sanz, S. (2022). Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results. Energies, 15(3), 1–39. doi:10.3390/en15031061.
[51] Liao, X., Zhang, Z., Yan, Q., Shi, Z., Xu, K., & Jia, D. (2022). Inversion of 1-D magnetotelluric data using CNN-LSTM hybrid network. Arabian Journal of Geosciences, 15(17), 1–9. doi:10.1007/s12517-022-10687-1.
[52] Wang, L., Yu, Z., Zhang, Y., & Yao, P. (2023). Review of machine learning methods applied to enhanced geothermal systems. Environmental Earth Sciences, 82(3), 1–19. doi:10.1007/s12665-023-10749-x.
[53] Amin, J., Sharif, M., Anjum, M. A., Raza, M., & Bukhari, S. A. C. (2020). Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI. Cognitive Systems Research, 59, 304–311. doi:10.1016/j.cogsys.2019.10.002.
[54] Imamverdiyev, Y., & Sukhostat, L. (2019). Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 174(October), 216–228. doi:10.1016/j.petrol.2018.11.023.
[55] Sarkalkan, N., Loeve, A. J., Van Dongen, K. W. A., Tuijthof, G. J. M., & Zadpoor, A. A. (2015). A novel ultrasound technique for detection of osteochondral defects in the ankle joint: A parametric and feasibility study. Sensors (Switzerland), 15(1), 148–165. doi:10.3390/s150100148.
[56] Lee, C. C., Koo, V. C., Lim, T. S., Lee, Y. P., & Abidin, H. (2022). A multi-layer perceptron-based approach for early detection of BSR disease in oil palm trees using hyperspectral images. Heliyon, 8(4), e09252. doi:10.1016/j.heliyon.2022.e09252.
[57] Xu, B., An, Z., Han, Y., & Ye, G. (2024). Denoising CSAMT signals in the time domain based on long short-term memory. Journal of Geophysics and Engineering, 21(2), 507–516. doi:10.1093/jge/gxae017.
[58] Jin, J., Zhang, Y., Hao, Z., Xia, R., Yang, W., Yin, H., & Zhang, X. (2022). Benchmarking data-driven rainfall-runoff modeling across 54 catchments in the Yellow River Basin: Overfitting, calibration length, dry frequency. Journal of Hydrology: Regional Studies, 42(April), 101119. doi:10.1016/j.ejrh.2022.101119.
[59] Ryu, K. H., Oh, S., & Kwon, H. S. (2024). Vehicle noise characteristics in magnetotelluric data and vehicle noise removal using waveform fitting. Journal of Applied Geophysics, 230(August), 105534. doi:10.1016/j.jappgeo.2024.105534.
[60] Wangwongchai, A., Waqas, M., Dechpichai, P., Hlaing, P. T., Ahmad, S., & Humphries, U. W. (2023). Imputation of missing daily rainfall data; A comparison between artificial intelligence and statistical techniques. MethodsX, 11(September), 102459. doi:10.1016/j.mex.2023.102459.
[61] Ogawa, H., Asamori, K., Negi, T., & Ueda, T. (2023). A novel method for processing noisy magnetotelluric data based on independence of signal sources and continuity of response functions. Journal of Applied Geophysics, 213(September), 105012. doi:10.1016/j.jappgeo.2023.105012.
[62] Garini, S. A., Shiddiqi, A. M., Utama, W., Jabar, O. A., & Insani, A. N. F. (2024). Enhanced Lithology Classification in Well Log Data Using Ensemble Machine Learning Techniques. 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), 1-8. doi:10.1109/AIMS61812.2024.10512485.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
