Health Risk Assessment of NO₂, PM₂.₅ and PM₁₀ Exposure in Children and Adolescents
Downloads
Chronic exposure to nitrogen dioxide (NO₂), particulate matter (PM₂.₅), and PM₁₀ can have negative impacts on both environmental and human health. This research aimed to determine the levels of NO₂, PM₁₀, and PM₂.₅ pollution in Makassar City and to assess the potential health risks for children and adolescents using the Monte Carlo Simulation (MCS) probabilistic approach for exposure to these pollutants in Makassar City, Indonesia. This analytic, cross-sectional study employed an MCS approach to evaluate health risks. The results showed higher NO₂ levels of 10.88 µg/m³ and 10.97 µg/m³ at stations 12 and 17 in Panakkukang and Borong, located near a truck parking area. Meanwhile, stations 21 in Tamalanrea Indah and 20 in Karampuang recorded higher PM₁₀ levels of 24.8 and 30.14 µg/m³, respectively. The hazard quotient (HQ) was 12.4, 20.3, and 19.8 for NO₂, PM₁₀, and PM₂.₅, respectively. Among children at the 5th and 95th percentiles, cancer risks for NO₂ were 13 and 34, corresponding to medium risk levels. In contrast, adolescents showed cancer risks of 102 and 223, indicating high risks. For adults, the sensitivity analysis for NO₂ revealed that the most significant factor contributing to health hazards was the length of exposure (ED) at 26.4%, followed by pollutant concentration (C) at 18.3%, exposure frequency (EF) at 17.8%, and inhalation rate at 17.2%, as shown in the sensitivity analysis chart. Overall, adolescents faced greater risks than children, with the highest HQ values in children being 8.98, 15.2, and 22.5 for NO₂, PM₁₀, and PM₂.₅, respectively, which were lower than those observed in adolescents. The total hazard quotient (THQ) risks for NO₂, PM₁₀, and PM₂.₅ were 12.4, 20.3, and 19.8, respectively. In conclusion, NO₂ and PM₂.₅ pose significant health risks to adolescents.
Downloads
[1] Song, H., Deng, S. X., Lu, Z. Z., Li, J. H., Ba, L. M., Wang, J. F., Sun, Z. G., Li, G. H., Jiang, C., & Hao, Y. Z. (2021). Scenario analysis of vehicular emission abatement procedures in Xi’an, China. Environmental Pollution, 269. doi:10.1016/j.envpol.2020.116187.
[2] Zeydan, & Zeydan. (2024). Impacts of travel bans and travel intention changes on aviation emissions due to Covid-19 pandemic. Environment, Development and Sustainability, 26(2), 4955–4972. doi:10.1007/s10668-023-02916-8.
[3] USDT. (2010). Transportation Statistics Annual Report (TSAR). U.S. Department of Transportation (USDT), Washington D.C., United States.
[4] Srisang, W., Jaroensutasinee, K., Jaroensutasinee, M., Khongthong, C., Piamonte, J. R. P., & Sparrow, E. B. (2024). PM2. 5 IoT Sensor Calibration and Implementation Issues Including Machine Learning. Emerging Science Journal, 8(6), 2267-2277. doi:10.28991/ESJ-2024-08-06-08.
[5] Matthaios, V. N., Kang, C. M., Wolfson, J. M., Greco, K. F., Gaffin, J. M., Hauptman, M., Cunningham, A., Petty, C. R., Lawrence, J., Phipatanakul, W., Gold, D. R., & Koutrakis, P. (2022). Factors Influencing Classroom Exposures to Fine Particles, Black Carbon, and Nitrogen Dioxide in Inner-City Schools and Their Implications for Indoor Air Quality. Environmental Health Perspectives, 130(4), 47005. doi:10.1289/EHP10007.
[6] Eum, K. Do, Kazemiparkouhi, F., Wang, B., Manjourides, J., Pun, V., Pavlu, V., & Suh, H. (2019). Long-term NO2 exposures and cause-specific mortality in American older adults. Environment International, 124, 10–15. doi:10.1016/j.envint.2018.12.060.
[7] Fenech, S., & Aquilina, N. J. (2020). Trends in ambient ozone, nitrogen dioxide, and particulate matter concentrations over the Maltese Islands and the corresponding health impacts. Science of the Total Environment, 700, 134527. doi:10.1016/j.scitotenv.2019.134527.
[8] Ernyasih, E., Mallongi, A., Daud, A., Palutturi, S., Stang, S., Thaha, A. R., Ibrahim, E., & Al Madhoun, W. (2023). Health risk assessment through probabilistic sensitivity analysis of carbon monoxide and fine particulate transportation exposure. Global Journal of Environmental Science and Management, 9(4), 933–950. doi:10.22035/gjesm.2023.04.18.
[9] Filigrana, P., Levy, J. I., Gauthier, J., Batterman, S., & Adar, S. D. (2022). Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington. Journal of Exposure Science and Environmental Epidemiology, 32(4), 538–544. doi:10.1038/s41370-022-00423-y.
[10] Bhat, T. H., Farzaneh, H., & Toosty, N. T. (2022). Co-Benefit Assessment of Active Transportation in Delhi, Estimating the Willingness to Use Nonmotorized Mode and Near-Roadway-Avoided PM2.5 Exposure. International Journal of Environmental Research and Public Health, 19(22), 1–22. doi:10.3390/ijerph192214974.
[11] Nagpure, A. S., Gurjar, B. R., Kumar, V., & Kumar, P. (2016). Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmospheric Environment, 127, 118–124. doi:10.1016/j.atmosenv.2015.12.026.
[12] W.H.O. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Recommendations on classical air pollutants. World Health Organization, Geneva, Switzerland.
[13] Lin, W. Y., Hsiao, M. C., Wu, P. C., Fu, J. S., Lai, L. W., & Lai, H. C. (2020). Analysis of air quality and health co-benefits regarding electric vehicle promotion coupled with power plant emissions. Journal of Cleaner Production, 247, 119152. doi:10.1016/j.jclepro.2019.119152.
[14] Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., … Spadaro, J. V. (2018). Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. doi:10.1073/pnas.1803222115.
[15] Mebrahtu, T. F., Santorelli, G., Yang, T. C., Wright, J., Tate, J., & McEachan, R. R. (2023). The effects of exposure to NO2, PM2.5 and PM10 on health service attendances with respiratory illnesses: A time-series analysis. Environmental Pollution, 333(2). doi:10.1016/j.envpol.2023.122123.
[16] Cui, C., Sadeghifar, H., Sen, S., & Argyropoulos, D. S. (2013). Toward thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources, 8(1), 864–886. doi:10.15376/biores.8.1.864-886.
[17] Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142. doi:10.1016/j.envint.2020.105876.
[18] Bakri, S., Apriliani, A. P., Kurniawaty, E., & Mayaquezz, H. (2024). Environmental and Demographic Effects on Vector Borne Disease Incidence: Welfare Role on DHF Reduction. Journal of Human, Earth, and Future, 5(1), 34-50. doi:10.28991/HEF-2024-05-01-03.
[19] Rauf, A. U., Mallongi, A., Daud, A., Hatta, M., Amiruddin, R., Stang, S., Wahyu, A., & Astuti, R. D. P. (2022). Spatial Distribution and Ecological Risk of Potentially Toxic Elements in Maros Regency, Indonesia. Carpathian Journal of Earth and Environmental Sciences, 17(1), 93–100. doi:10.26471/cjees/2022/017/203.
[20] Astuti, R. D. P., Mallongi, A., Amiruddin, R., Hatta, M., & Rauf, A. U. (2021). Risk identification of heavy metals in well water surrounds watershed area of Pangkajene, Indonesia. Gaceta Sanitaria, 35, S33–S37. doi:10.1016/j.gaceta.2020.12.010.
[21] Tsanov, E., Valchev, D., Ribarova, I., & Dimova, G. (2024). Quality of Harvested Rainwater from a Green and a Bitumen Roof in an Air Polluted Region. Civil Engineering Journal, 10(5), 1589-1605. doi:10.28991/CEJ-2024-010-05-015.
[22] Melén, E., Zar, H. J., Siroux, V., Shaw, D., Saglani, S., Koppelman, G. H., Hartert, T., Gern, J. E., Gaston, B., Bush, A., & Zein, J. (2024). Asthma Inception: Epidemiologic Risk Factors and Natural History across the Life Course. American Journal of Respiratory and Critical Care Medicine, 210(6), 737–754. doi:10.1164/rccm.202312-2249SO.
[23] Lee, S. Y., Jang, M. J., Oh, S. H., Lee, J. H., Suh, M. W., & Park, M. K. (2020). Associations between particulate matter and otitis media in children: A meta-analysis. International Journal of Environmental Research and Public Health, 17(12), 1–16. doi:10.3390/ijerph17124604.
[24] Ziou, M., Tham, R., Wheeler, A. J., Zosky, G. R., Stephens, N., & Johnston, F. H. (2022). Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. Environmental Research, 210, 112969. doi:10.1016/j.envres.2022.112969.
[25] Rosser, F., Forno, E., Kurland, K. S., Han, Y. Y., Mair, C., Acosta‐Pérez, E., ... & Celedón, J. C. (2020). Annual SO2 exposure, asthma, atopy, and lung function in Puerto Rican children. Pediatric pulmonology, 55(2), 330-337. doi:10.1002/ppul.24595.
[26] Qin, P., Luo, X., Zeng, Y., Zhang, Y., Li, Y., Wu, Y., Han, M., Qie, R., Wu, X., Liu, D., Huang, S., Zhao, Y., Feng, Y., Yang, X., Hu, F., Sun, X., Hu, D., & Zhang, M. (2021). Long-term association of ambient air pollution and hypertension in adults and in children: A systematic review and meta-analysis. Science of the Total Environment, 796, 148620. doi:10.1016/j.scitotenv.2021.148620.
[27] Lim, H. M., Ryoo, S. W., Hong, Y. C., Kim, S. T., Lim, Y. H., & Lee, D. W. (2022). Association between Long-Term Exposure to Fine Particulate Matter and Asthma Incidence among School-Aged Children. Atmosphere, 13(9), 1430. doi:10.3390/atmos13091430.
[28] Ji, J. S., Liu, L., Zhang, J. (Jim), Kan, H., Zhao, B., Burkart, K. G., & Zeng, Y. (2022). NO2 and PM2.5 air pollution co-exposure and temperature effect modification on pre-mature mortality in advanced age: a longitudinal cohort study in China. In Environmental Health: A Global Access Science Source, 21(1), 1–14. doi:10.1186/s12940-022-00901-8.
[29] Leão, M. L. P., Zhang, L., & da Silva Júnior, F. M. R. (2023). Effect of particulate matter (PM2.5 and PM10) on health indicators: climate change scenarios in a Brazilian metropolis. Environmental Geochemistry and Health, 45(5), 2229–2240. doi:10.1007/s10653-022-01331-8.
[30] Brągoszewska, E., & Mainka, A. (2022). Impact of Different Air Pollutants (PM10, PM2.5, NO2, and Bacterial Aerosols) on COVID-19 Cases in Gliwice, Southern Poland. International Journal of Environmental Research and Public Health, 19(21), 14181. doi:10.3390/ijerph192114181.
[31] Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 14. doi:10.3389/fpubh.2020.00014.
[32] Ponzano, M., Schiavetti, I., Bergamaschi, R., Pisoni, E., Bellavia, A., Mallucci, G., Carmisciano, L., Inglese, M., Cordioli, C., Marfia, G. A., Cocco, E., Immovilli, P., Pesci, I., Scandellari, C., Cavalla, P., Radaelli, M., Vianello, M., Vitetta, F., Montepietra, S., … Sormani, M. P. (2022). The impact of PM2.5, PM10 and NO2 on Covid-19 severity in a sample of patients with multiple sclerosis: A case-control study. Multiple Sclerosis and Related Disorders, 68, 104243. doi:10.1016/j.msard.2022.104243.
[33] Osborne, S., Uche, O., Mitsakou, C., Exley, K., & Dimitroulopoulou, S. (2021). Air quality around schools: Part I - A comprehensive literature review across high-income countries. Environmental Research, 196(January), 110817. doi:10.1016/j.envres.2021.110817.
[34] Parasin, N., Amnuaylojaroen, T., & Saokaew, S. (2023). Exposure to PM10, PM2.5, and NO2 and gross motor function in children: a systematic review and meta-analysis. European Journal of Pediatrics, 182(4), 1495–1504. doi:10.1007/s00431-023-04834-3.
[35] Pun, V. C., Dowling, R., & Mehta, S. (2021). Ambient and household air pollution on early-life determinants of stunting—a systematic review and meta-analysis. Environmental Science and Pollution Research, 28(21), 26404–26412. doi:10.1007/s11356-021-13719-7.
[36] Ghosh, R., Causey, K., Burkart, K., Wozniak, S., Cohen, A., & Brauer, M. (2021). Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories. PLoS Medicine, 18(9), 1–22. doi:10.1371/journal.pmed.1003718.
[37] Nyadanu, S. D., Dunne, J., Tessema, G. A., Mullins, B., Kumi-Boateng, B., Bell, M. L., Duko, B., & Pereira, G. (2024). Maternal exposure to ambient air temperature and adverse birth outcomes: An umbrella review of systematic reviews and meta-analyses. Science of the Total Environment, 917, 119465. doi:10.1016/j.scitotenv.2024.170236.
[38] Yu, Z., Zhang, X., Zhang, J., Feng, Y., Zhang, H., Wan, Z., Xiao, C., Zhang, H., Wang, Q., & Huang, C. (2022). Gestational exposure to ambient particulate matter and preterm birth: An updated systematic review and meta-analysis. Environmental Research, 212(Pt C), 113381. doi:10.1016/j.envres.2022.113381.
[39] Rauf, A. U., Mallongi, A., Hatta, M., Astuti, R. D. P., & Malik, T. G. (2024). Integrating dynamic modeling into health risk analysis to reduce the exposure of potentially hazardous elements. International Journal of Environmental Science and Technology, 21(13), 8617–8634. doi:10.1007/s13762-024-05537-4.
[40] Matthaios, V. N., Harrison, R. M., Koutrakis, P., & Bloss, W. J. (2023). In-vehicle exposure to NO2 and PM2.5: A comprehensive assessment of controlling parameters and reduction strategies to minimise personal exposure. Science of the Total Environment, 900, 900 165537. doi:10.1016/j.scitotenv.2023.165537.
[41] Government Regulations, (2021). Government Regulation of the Republic of Indonesia Number 22 of 2021 concerning the Implementation of Environmental Protection and Management. Republik Indonesia, Jakarta, Indonesia.
[42] Shaltout, A. A., Kadi, M. W., Abd-Elkader, O. H., & Boman, J. (2024). Environmental and health risks of potentially toxic elements in ambient PM10 in Jeddah, Saudi Arabia. International Journal of Environmental Science and Technology, 21(8), 6261–6274. doi:10.1007/s13762-023-05405-7.
[43] Huang, S., Li, H., Wang, M., Qian, Y., Steenland, K., Caudle, W. M., Liu, Y., Sarnat, J., Papatheodorou, S., & Shi, L. (2021). Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Science of the Total Environment, 776. doi:10.1016/j.scitotenv.2021.145968.
[44] Jia, C., Li, W., Wu, T., & He, M. (2021). Road traffic and air pollution: Evidence from a nationwide traffic control during coronavirus disease 2019 outbreak. Science of the Total Environment, 781, 146618. doi:10.1016/j.scitotenv.2021.146618.
[45] Guaman, M., Roberts-Semple, D., Aime, C., Shin, J., & Akinremi, A. (2022). Traffic Density and Air Pollution: Spatial and Seasonal Variations of Nitrogen Dioxide and Ozone in Jamaica, New York. Atmosphere, 13(12), 2042. doi:10.3390/atmos13122042.
[46] Krall, J. R., Thornburg, J., Zhang, T., Pollack, A. Z., Lee, Y. C., McCombs, M., & Henneman, L. R. F. (2024). Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area. Environments, 11(7), 135. doi:10.3390/environments11070135.
[47] Zhao, S., Fan, Y., Zhao, P., Mansourian, A., & Ho, H. C. (2024). How do taxi drivers expose to fine particulate matter (PM2.5) in a Chinese megacity: a rapid assessment incorporating with satellite-derived information and urban mobility data. International Journal of Health Geographics, 23(1), 9. doi:10.1186/s12942-024-00368-5.
[48] Dominici, F., Zanobetti, A., Schwartz, J., Braun, D., Sabath, B., & Wu, X. (2022). Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Implementation of Causal Inference Methods. Research Report (Health Effects Institute), 211, 1–56.
[49] Al-Kindi, S. G., Brook, R. D., Biswal, S., & Rajagopalan, S. (2020). Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nature Reviews Cardiology, 17(10), 656–672. doi:10.1038/s41569-020-0371-2.
[50] Janjua, S., Powell, P., Atkinson, R., Stovold, E., & Fortescue, R. (2019). Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on long-term respiratory conditions. Cochrane Database of Systematic Reviews, 10. doi:10.1002/14651858.CD013441.
[51] Kazemi, Z., Jonidi Jafari, A., Farzadkia, M., Amini, P., & Kermani, M. (2024). Evaluating the mortality and health rate caused by the PM2.5 pollutant in the air of several important Iranian cities and evaluating the effect of variables with a linear time series model. Heliyon, 10(6), e27862. doi:10.1016/j.heliyon.2024.e27862.
[52] Klompmaker, J. O., Janssen, N. A., Bloemsma, L. D., Marra, M., Lebret, E., Gehring, U., & Hoek, G. (2021). Effects of exposure to surrounding green, air pollution and traffic noise with non-accidental and cause-specific mortality in the Dutch national cohort. Environmental health, 20, 1-16. doi:10.1186/s12940-021-00769-0.
[53] Ma, Y., Nobile, F., Marb, A., Dubrow, R., Stafoggia, M., Breitner, S., Kinney, P. L., & Chen, K. (2024). Short-Term Exposure to Fine Particulate Matter and Nitrogen Dioxide and Mortality in 4 Countries. JAMA Network Open, 7(3), E2354607. doi:10.1001/jamanetworkopen.2023.54607.
[54] Kasdagli, M. I., Orellano, P., Pérez Velasco, R., & Samoli, E. (2024). Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. International Journal of Public Health, 69(1607676). doi:10.3389/ijph.2024.1607676.
[55] Afifa, Arshad, K., Hussain, N., Ashraf, M. H., & Saleem, M. Z. (2024). Air pollution and climate change as grand challenges to sustainability. Science of the Total Environment, 928, 172370. doi:10.1016/j.scitotenv.2024.172370.
[56] Purnomo, A., Andang, A., Badriah, S., Paryono, E., Sambas, A., & Umar, R. (2024). Influence of Wind Speed and Direction on the Performance of Low-Cost Particulate Matter Sensors. Environment and Ecology Research, 12(4), 446–455. doi:10.13189/eer.2024.120409.
[57] Zoran, M. A., Savastru, R. S., Savastru, D. M., & Tautan, M. N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Science of the Total Environment, 738, 139825. doi:10.1016/j.scitotenv.2020.139825.
[58] Xu, G., Ren, X., Xiong, K., Li, L., Bi, X., & Wu, Q. (2020). Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecological Indicators, 110, 105889. doi:10.1016/j.ecolind.2019.105889.
[59] Soleimanpour, M., Alizadeh, O., & Sabetghadam, S. (2023). Analysis of diurnal to seasonal variations and trends in air pollution potential in an urban area. Scientific Reports, 13(1), 21065. doi:10.1038/s41598-023-48420-x.
[60] Kiseleva, O., Kalthoff, N., Adler, B., Kossmann, M., Wieser, A., & Rinke, R. (2021). Nocturnal atmospheric conditions and their impact on air pollutant concentrations in the city of Stuttgart. Meteorological Applications, 28(6), 1–23. doi:10.1002/met.2037.
[61] Gu, Y., Fang, T., & Yim, S. H. L. (2024). Source emission contributions to particulate matter and ozone, and their health impacts in Southeast Asia. Environment International, 186, 108578. doi:10.1016/j.envint.2024.108578.
[62] Baensch-Baltruschat, B., Kocher, B., Stock, F., & Reifferscheid, G. (2020). Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of the Total Environment, 733, 137823. doi:10.1016/j.scitotenv.2020.137823.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
