Salt-Tolerant Phosphate-Solubilizing Bacteria from Saline Soils: Phosphate Mobilization Mechanism
Downloads
Soil salinity is a significant constraint on agricultural productivity and disturbs the availability of nutritional elements necessary for plants, such as phosphorus. Microorganisms have specialized adaptation features, such as tolerance to salt, stimulation of growth, and the ability to promote plant survival under saline conditions. The objectives of this investigation were to isolate new salt-tolerant, phosphate-solubilizing bacterial strains, assess their phosphate-solubilizing activity, and investigate the mechanisms of phosphate mobilization under salinity stress. Phosphate-solubilizing bacteria were isolated from saline pasture soils in southeastern Kazakhstan, and their salt tolerance and phosphate-solubilizing activity were identified. Three highly active strains were selected and identified by Sanger-based molecular genetic analysis: Enterobacter cloacae FY3, Pseudomonas putida FT4, and Bacillus megaterium F7A. Organic acid production by these strains under salt stress was analyzed using gas chromatography. The results indicated that the strains produced 12 organic acids, with differences in composition and amount between strains. The most important phosphate solubilization mechanism under salinity stress is the secretion of organic acids. Organic acid secretion, pH reduction, and increased soluble phosphorus content were positively correlated. These findings provide an effective method for phosphorus mobilization in salt soils, and the recovered strains are likely candidates for making biofertilizers applicable to salt environments. These new strains are candidates for the development of biofertilizers for saline soils.
Downloads
[1] Negacz, K., Malek, Ž., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203, 104775. doi:10.1016/j.jaridenv.2022.104775.
[2] FAO. (2021). Global Map of Salt Affected Soils Version 1.0. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (accessed on August 2025).
[3] Tarolli, P., Luo, J., Park, E., Barcaccia, G., & Masin, R. (2024). Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience, 27(2), 108830. doi:10.1016/j.isci.2024.108830.
[4] Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C., & Jespersen, D. (2023). Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1241736.
[5] Palmgren, M., & Shabala, S. (2024). Adapting crops for climate change: regaining lost abiotic stress tolerance in crops. Frontiers in Science, 2. doi:10.3389/fsci.2024.1416023.
[6] Nainwal, R. C., Chaurasiya, P., Kumar, A., Singh, M., Singh, D., & Tewari, S. K. (2024). Phytoremediation: A Sustainable Approach to Combat Soil Salinity. Advances in Environmental and Engineering Research, 5(2), 1–16. doi:10.21926/aeer.2402015.
[7] El-Ramady, H., Prokisch, J., Mansour, H., Bayoumi, Y. A., Shalaby, T. A., Veres, S., & Brevik, E. C. (2024). Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Systems, 8(1), 11. doi:10.3390/soilsystems8010011.
[8] Sarker, A., Ansary, M. W. R., Hossain, M. N., & Islam, T. (2021). Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil and Plant Health by Beneficial Rhizobacteria. Stresses, 1(4), 200–222. doi:10.3390/stresses1040015.
[9] Loi, L. T., Minh, V. Q., & Duy, N. N. (2022). Changing of Soil Properties under Drought and Saline Water Intrusion Conditions in Different Land-Use Patterns – A Case Study in the Ben Tre Province, Vietnam. Journal of Ecological Engineering, 23(8), 112–118. doi:10.12911/22998993/150692.
[10] Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y. H., Li, L., & Li, W. J. (2024). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, 100319. doi:10.1016/j.stress.2023.100319.
[11] Zhu, H. Y., Gan, B., Xu, J. B., Liang, F., Zhou, B. B., Sun, Y., Duan, M. L., & Bai, Y. H. (2023). Effect of Soil Salinity on Nitrogen Transformation in Soil with Nitrogen Fertilizer Application. Applied Ecology and Environmental Research, 21(6), 5625–5642. doi:10.15666/aeer/2106_56255642.
[12] Xie, W., Yang, J., Gao, S., Yao, R., & Wang, X. (2022). The Effect and Influence Mechanism of Soil Salinity on Phosphorus Availability in Coastal Salt-Affected Soils. Water (Switzerland), 14(18), 2804. doi:10.3390/w14182804.
[13] Lovio-Fragoso, J. P., de Jesús-Campos, D., López-Elías, J. A., Medina-Juárez, L. Á., Fimbres-Olivarría, D., & Hayano-Kanashiro, C. (2021). Biochemical and molecular aspects of phosphorus limitation in diatoms and their relationship with biomolecule accumulation. Biology, 10(7), 565. doi:10.3390/biology10070565.
[14] Meng, X., Chen, W. W., Wang, Y. Y., Huang, Z. R., Ye, X., Chen, L. S., & Yang, L. T. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16(2 February), 246944. doi:10.1371/journal.pone.0246944.
[15] Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15), 2861. doi:10.3390/plants12152861.
[16] Mishra, S., Levengood, H., Fan, J., & Zhang, C. (2024). Plants under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. Plants, 13(22), 3144. doi:10.3390/plants13223144.
[17] Ualiyeva, R. M., Zhangazin, S. B., & Altayeva, I. B. (2022). Structural Organization of Vitelline Cells of Trematode with Undifferentiated Body of Azygia Lucii (Muller, 1776). OnLine Journal of Biological Sciences, 22(1), 10–17. doi:10.3844/ojbsci.2022.10.17.
[18] Wang, J., Qi, Z., & Wang, C. (2023). Phosphorus loss management and crop yields: A global meta-analysis. Agriculture, Ecosystems and Environment, 357, 108683. doi:10.1016/j.agee.2023.108683.
[19] Solangi, F., Zhu, X., Khan, S., Rais, N., Majeed, A., Sabir, M. A., Iqbal, R., Ali, S., Hafeez, A., Ali, B., Ercisli, S., & Kayabasi, E. T. (2023). The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability. ACS Omega, 8(26), 23271–23282. doi:10.1021/acsomega.3c00823.
[20] Bouras, H., Mamassi, A., Devkota, K. P., Choukr-Allah, R., & Bouazzama, B. (2023). Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming. Plant Stress, 10, 100295. doi:10.1016/j.stress.2023.100295.
[21] Dey, G., Banerjee, P., Sharma, R. K., Maity, J. P., Etesami, H., Shaw, A. K., Huang, Y. H., Huang, H. Bin, & Chen, C. Y. (2021). Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—a review. Agronomy, 11(8), 1552. doi:10.3390/agronomy11081552.
[22] Kaya, C., Uğurlar, F., Ashraf, M., Alyemeni, M. N., Dewil, R., & Ahmad, P. (2024). Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. Journal of Environmental Management, 351, 119759. doi:10.1016/j.jenvman.2023.119759.
[23] Zheng, S., Yin, K., & Yu, L. (2022). Factors influencing the farmer’s chemical fertilizer reduction behavior from the perspective of farmer differentiation. Heliyon, 8(12), 11918. doi:10.1016/j.heliyon.2022.e11918.
[24] Krasilnikov, P., Taboada, M. A., & Amanullah. (2022). Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture (Switzerland), 12(4), 462. doi:10.3390/agriculture12040462.
[25] Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(10), 10. doi:10.3390/agronomy11102010.
[26] Liu, L., Zheng, X., Wei, X., Kai, Z., & Xu, Y. (2021). Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Scientific Reports, 11(1), 23015. doi:10.1038/s41598-021-02521-7.
[27] Alexander, A., Singh, V. K., & Mishra, A. (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.568289.
[28] Egea, I., Estrada, Y., Faura, C., Egea-Fernández, J. M., Bolarin, M. C., & Flores, F. B. (2023). Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1092885.
[29] Jeon, D., Kim, J. B., Kang, B. C., & Kim, C. (2023). Deciphering the Genetic Mechanisms of Salt Tolerance in Sorghum bicolor L.: Key Genes and SNP Associations from Comparative Transcriptomic Analyses. Plants, 12(14), 2639. doi:10.3390/plants12142639.
[30] Wijitkosum, S., Sriburi, T., & Krutnoi, L. (2024). Taking Advantage of Disposal Bamboo Chopsticks to Produce Biochar for Greenhouse Crop Cultivation. Emerging Science Journal, 8(3), 917–932. doi:10.28991/ESJ-2024-08-03-07.
[31] Huang, K., Li, M., Li, R., Rasul, F., Shahzad, S., Wu, C., Shao, J., Huang, G., Li, R., Almari, S., Hashem, M., & Aamer, M. (2023). Soil acidification and salinity: the importance of biochar application to agricultural soils. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1206820.
[32] Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y., & Bargaz, A. (2022). Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. Journal of Advanced Research, 38, 13–28. doi:10.1016/j.jare.2021.08.014.
[33] García-Berumen, J. A., Flores de la Torre, J. A., de los Santos-Villalobos, S., Espinoza-Canales, A., Echavarría-Cháirez, F. G., & Gutiérrez-Bañuelos, H. (2025). Phosphorus dynamics and sustainable agriculture: The role of microbial solubilization and innovations in nutrient management. Current Research in Microbial Sciences, 8, 100326. doi:10.1016/j.crmicr.2024.100326.
[34] Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture (Switzerland), 13(2), 462. doi:10.3390/agriculture13020462.
[35] Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of the Total Environment, 901, 166468. doi:10.1016/j.scitotenv.2023.166468.
[36] Zhu, Y., Xing, Y., Li, Y., Jia, J., Ying, Y., & Shi, W. (2024). The Role of Phosphate-Solubilizing Microbial Interactions in Phosphorus Activation and Utilization in Plant–Soil Systems: A Review. Plants, 13(19), 2686. doi:10.3390/plants13192686.
[37] Sunita, K., Mishra, I., Mishra, J., Prakash, J., & Arora, N. K. (2020). Secondary Metabolites from Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.567768.
[38] Zulfikar, T., Siregar, T. N., Rozaliyani, A., & Sutriana, A. (2024). Antimicrobial Potential of Calotropis gigantea Leaf against Klebsiella pneumoniae in Ventilator-Associated Pneumonia. Journal of Human, Earth, and Future, 5(3), 456–470. doi:10.28991/HEF-2024-05-03-010.
[39] Ahmad, M., Naqve, M., Lihong, W., Zia, M. A., Mahmood, A., Javaid, M. M., Ameen, M., Rashed, A. A., Rasheed, A., Hassan, M. U., &Qari, S. H. (2024). Mitigating negative impact of salinity on berseem (Trifoliumalexandrinum) by foliar application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13467. doi:10.15835/nbha52113467.
[40] Pan, L., & Cai, B. (2023). Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. doi:10.3390/microorganisms11122904.
[41] Liu, Y., Xun, W., Chen, L., Xu, Z., Zhang, N., Feng, H., Zhang, Q., & Zhang, R. (2022). Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Computational and Structural Biotechnology Journal, 20, 6543–6551. doi:10.1016/j.csbj.2022.11.046.
[42] Ondrasek, G., Rathod, S., Manohara, K. K., Gireesh, C., Anantha, M. S., Sakhare, A. S., Parmar, B., Yadav, B. K., Bandumula, N., Raihan, F., Zielińska-Chmielewska, A., Meriño-Gergichevich, C., Reyes-Díaz, M., Khan, A., Panfilova, O., Fuentealba, A. S., Romero, S. M., Nabil, B., Wan, C., … Horvatinec, J. (2022). Salt Stress in Plants and Mitigation Approaches. Plants, 11(6), 717. doi:10.3390/plants11060717.
[43] Iqbal, B., Li, G., Alabbosh, K. F., Hussain, H., Khan, I., Tariq, M., Javed, Q., Naeem, M., & Ahmad, N. (2023). Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress, 10, 100283. doi:10.1016/j.stress.2023.100283.
[44] Khoso, M. A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., Poudel, T. R., Manghwar, H., & Liu, F. (2024). Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, 11, 100341. doi:10.1016/j.stress.2023.100341.
[45] Fu, M., Liu, L., Fu, B., Hou, M., Xiao, Y., Liu, Y., Sa, D., & Lu, Q. (2024). Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. Frontiers in Plant Science, 15. doi:10.3389/fpls.2024.1516336.
[46] Benitez-Alfonso, Y., Soanes, B. K., Zimba, S., Sinanaj, B., German, L., Sharma, V., Bohra, A., Kolesnikova, A., Dunn, J. A., Martin, A. C., Khashi u Rahman, M., Saati-Santamaría, Z., García-Fraile, P., Ferreira, E. A., Frazão, L. A., Cowling, W. A., Siddique, K. H. M., Pandey, M. K., Farooq, M., … Foyer, C. H. (2023). Enhancing climate change resilience in agricultural crops. Current Biology, 33(23), R1246–R1261. doi:10.1016/j.cub.2023.10.028.
[47] Wang, C., Pan, G., Lu, X., & Qi, W. (2023). Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Frontiers in Bioengineering and Biotechnology, 11. doi:10.3389/fbioe.2023.1181078.
[48] Rababah, S., Alawneh, A., Albiss, B. A., Aldeeky, H. H., Bani Ismaeel, E. J., & Mutlaq, S. (2024). Enhancing Soil Stability through Innovative Microbial-Induced Calcium Carbonate Techniques with Sustainable Ingredient. Civil Engineering Journal, 10(8), 2536–2553. doi:10.28991/CEJ-2024-010-08-08.
[49] Faller, L., Leite, M. F. A., & Kuramae, E. E. (2024). Enhancing phosphate-solubilising microbial communities through artificial selection. Nature Communications, 15(1), 1649. doi:10.1038/s41467-024-46060-x.
[50] Yue, L., Jiao, L., Tao, M., Xu, L., Cao, X., Chen, F., Wang, C., Cheng, B., & Wang, Z. (2023). Dynamics of organic acid exudation and rhizobacteria in maize rhizosphere respond to N-CDs. Science of the Total Environment, 901, 166500. doi:10.1016/j.scitotenv.2023.166500.
[51] Zuluaga, M. Y. A., de Oliveira, A. L. M., Valentinuzzi, F., Jayme, N. S., Monterisi, S., Fattorini, R., Cesco, S., & Pii, Y. (2023). An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: in situ study on cucumber. BMC Microbiology, 23(1), 184. doi:10.1186/s12866-023-02918-6.
[52] Li, H. P., Han, Q. Q., Liu, Q. M., Gan, Y. N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J. L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. doi:10.1016/j.micres.2023.127375.
[53] Seregin, I. V., & Kozhevnikova, A. D. (2024). The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. International Journal of Molecular Sciences, 25(17), 9542. doi:10.3390/ijms25179542.
[54] Wiesenbauer, J., Gorka, S., Jenab, K., Schuster, R., Kumar, N., Rottensteiner, C., König, A., Kraemer, S., Inselsbacher, E., & Kaiser, C. (2025). Preferential use of organic acids over sugars by soil microbes in simulated root exudation. Soil Biology and Biochemistry, 203. doi:10.1016/j.soilbio.2025.109738.
[55] Janati, W., Bouabid, R., Mikou, K., Ghadraoui, L. El, & Errachidi, F. (2023). Phosphate solubilizing bacteria from soils with varying environmental conditions: Occurrence and function. PLoS ONE, 18(12), 289127. doi:10.1371/journal.pone.0289127.
[56] de Almeida Leite, R., Martins da Costa, E., Cabral Michel, D., do Amaral Leite, A., de Oliveira-Longatti, S. M., de Lima, W., Konstantinidis, K. T., & de Souza Moreira, F. M. (2024). Genomic insights into organic acid production and plant growth promotion by different species of phosphate-solubilizing bacteria. World Journal of Microbiology and Biotechnology, 40(10), 311. doi:10.1007/s11274-024-04119-3.
[57] ElDala.kz. (2025). Available online: https://eldala.kz/novosti/kazahstan/12539-opublikovana-administrativnaya-karta-kazahstana-s-uchetom-novyh-oblastey (accessed on August 2025).
[58] Google Public Maps. (2025). Available online: https://www.google.kz/maps/ (accessed on August 2025).
[59] GOST 17.4.4.02-84. (2017). Nature Protection: State Standard. Soils. Methods of Sampling and Preparation of Material for Chemical, Bacteriological, and Helminthological Analysis. Standartinform, Moscow, Russia. (in Russian).
[60] Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., Xiaolei, D., Xuejiao, H., & Bilal, M. (2023). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiology, 23(1), 221. doi:10.1186/s12866-023-02953-3.
[61] Reis, M. N. O., Bessa, L. A., de Jesus, A. P., Guimarães Silva, F., Moreira, M. A., & Vitorino, L. C. (2021). Efficiency of the Hydroponic System as an Approach to Confirm the Solubilization of CaHPO4 by Microbial Strains Using Glycine max as a Model. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.759463.
[62] Amy, C., Avice, J. C., Laval, K., & Bressan, M. (2022). Are native phosphate solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part I. when rhizobacteria meet plant P requirements. Rhizosphere, 21, 100476. doi:10.1016/j.rhisph.2022.100476.
[63] Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., & Lipok, J. (2022). Determination of phosphorus compounds in plant tissues: from colourimetry to advanced instrumental analytical chemistry. Plant Methods, 18(1), 22. doi:10.1186/s13007-022-00854-6.
[64] Winand, R., Bogaerts, B., Hoffman, S., Lefevre, L., Delvoye, M., Van Braekel, J., Fu, Q., Roosens, N. H. C., De Keersmaecker, S. C. J., & Vanneste, K. (2020). Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (illumina) and third (oxford nanopore technologies) generation sequencing technologies. International Journal of Molecular Sciences, 21(1), 298. doi:10.3390/ijms21010298.
[65] NCBI. Available online: http://www.ncbi.nlm.nih.gov/ (accessed on August 2025).
[66] Sadanov, A., Alimzhanova, M., Ismailova, E., Shemshura, O., Ashimuly, K., Molzhigitova, A., & Daugaliyeva, S. (2023). Antagonistic and protective activity of Lactobacillus plantarum strain 17 M against E. amylovora. World Journal of Microbiology and Biotechnology, 39(11), 314. doi:10.1007/s11274-023-03765-3.
[67] Borovikov, V. P. (2018). A popular introduction to modern data analysis in STATISTICA-10. Publishing House "Hot Line -Telecom", Moscow, Russia. (in Russian).
[68] Gómez-de-Mariscal, E., Guerrero, V., Sneider, A., Jayatilaka, H., Phillip, J. M., Wirtz, D., & Muñoz-Barrutia, A. (2021). Use of the p-values as a size-dependent function to address practical differences when analyzing large datasets. Scientific Reports, 11(1), 20942. doi:10.1038/s41598-021-00199-5.
[69] Merli, G., Becci, A., Amato, A., & Beolchini, F. (2021). Acetic acid bioproduction: The technological innovation change. Science of the Total Environment, 798, 149292. doi:10.1016/j.scitotenv.2021.149292.
[70] Tarigan, D. M., Barus, W. A., Munar, A., & Lestami, A. (2023). Exploration and Morphological Characterization of Phosphate-Solubilizing and Nitrogen-Fixing Bacteria in Saline Soil. Sabrao Journal of Breeding and Genetics, 55(2), 550–563. doi:10.54910/sabrao2023.55.2.27.
[71] Koczorski, P., Furtado, B. U., Gołębiewski, M., Hulisz, P., Thiem, D., Baum, C., Weih, M., & Hrynkiewicz, K. (2022). Mixed growth of Salix species can promote phosphate-solubilizing bacteria in the roots and rhizosphere. Frontiers in Microbiology, 13. doi:10.3389/fmicb.2022.1006722.
[72] Zhang, G., Bai, J., Zhai, Y., Jia, J., Zhao, Q., Wang, W., & Hu, X. (2024). Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. Journal of Advanced Research, 59, 129–140. doi:10.1016/j.jare.2023.06.015.
[73] Zhang, H., Chang, D., Zhu, Z., Meng, C., & Wang, K. (2024). Soil priming effects and involved microbial community along salt gradients. Biogeosciences, 21(1), 1–11. doi:10.5194/bg-21-1-2024.
[74] Saranya, K., Sundaramanickam, A., Manupoori, S., & Kanth, S. V. (2022). Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition. Microbiological Research, 261, 127080. doi:10.1016/j.micres.2022.127080.
[75] Zhang, C., Chen, H., Dai, Y., Chen, Y., Tian, Y., & Huo, Z. (2023). Isolation and screening of phosphorus solubilizing bacteria from saline alkali soil and their potential for Pb pollution remediation. Frontiers in Bioengineering and Biotechnology, 11. doi:10.3389/fbioe.2023.1134310.
[76] Teles, E. A. P., Xavier, J. F., Arcênio, F. S., Amaya, R. L., Gonçalves, J. V. S., Rouws, L. F. M., Zonta, E., & Coelho, I. S. (2023). Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1324056.
[77] Kumawat, C., Kumar, A., Parshad, J., Sharma, S. S., Patra, A., Dogra, P., Yadav, G. K., Dadhich, S. K., Verma, R., & Kumawat, G. L. (2022). Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. Sustainability (Switzerland), 14(15), 9280. doi:10.3390/su14159280.
[78] Aliyat, F. Z., Maldani, M., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10(5), 980. doi:10.3390/microorganisms10050980.
[79] Kouas, S., Djedidi, S., Ben Slimene Debez, I., Sbissi, I., Alyami, N. M., & Hirsch, A. M. (2024). Halotolerant phosphate solubilizing bacteria isolated from arid area in Tunisia improve P status and photosynthetic activity of cultivated barley under P shortage. Heliyon, 10(19), 38653. doi:10.1016/j.heliyon.2024.e38653.
[80] Wang, W., Sun, X., Huang, W., Men, X., Yi, S., Zheng, F., Zhang, Z., & Wang, Z. (2023). Soil P solubilization and plant growth promotion by a saline-alkali-tolerant P-solubilizing bacterium, Bacillus sp. DYS211. Journal of Plant Ecology, 16(6), 1-13. doi:10.1093/jpe/rtad028.
[81] Fuskhah, E., & Purbajanti, E. D. (2023). Exploration and selection of salt tolerant phosphate solubilizing bacteria from the Indonesian saline soils. IOP Conference Series: Earth and Environmental Science, 1246(1), 12026. doi:10.1088/1755-1315/1246/1/012026.
[82] Belkebla, N., Bessai, S. A., Melo, J., Caeiro, M. F., Cruz, C., & Nabti, E. H. (2022). Restoration of Triticum aestivum Growth under Salt Stress by Phosphate-Solubilizing Bacterium Isolated from Southern Algeria. Agronomy, 12(9), 2050. doi:10.3390/agronomy12092050.
[83] Kumar, M., & Prasad, V. (2025). Growth and functional evaluation of Enterobacter cloacae under salinity stress. Biocatalysis and Agricultural Biotechnology, 64, 103495. doi:10.1016/j.bcab.2025.103495.
[84] Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. doi:10.1007/s42729-020-00342-7.
[85] Guan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. doi:10.1007/s00253-019-10226-1.
[86] Suriani, N. L., Suprapta, D. N., Suarsana, I. N., Reddy, M. S., Gunawan, S., Herlambang, S., Resiani, N. M. D., Pratiwi, E., Sabullah, M. K., Alfarraj, S., & Ansari, M. J. (2022). Piper caninum extract and Brevibacillus agri mixture suppresses rice leaf spot pathogen; Nigrospora oryzae and improves the production of red rice (Oryza sativa L). Frontiers in Sustainable Food Systems, 6. doi:10.3389/fsufs.2022.1080481.
[87] Setiawati, T. C., Erwin, D., Mandala, M., & Hidayatulah, A. (2022). Use of Bacillus as a Plant Growth-Promoting Rhizobacteria to Improve Phosphate and Potassium Availability in Acidic and Saline Soils. KnE Life Sciences, 7(3), 11160. doi:10.18502/kls.v7i3.11160.
[88] Smirnova, I., Sadanov, A., Baimakhanova, G., Faizulina, E., & Tatarkina, L. (2024). Phosphate-Solubilizing Salt-Tolerant Bacteria to Support Soybean Growth (Glycine max (L.) Merr.) On Saline Soils. OnLine Journal of Biological Sciences, 24(1), 9–18. doi:10.3844/ojbsci.2024.9.18.
[89] Wang, Z., Lajoie, G., Jiang, Y., Zhang, M., Chu, C., Chen, Y., Fang, S., Jin, G., Jiang, M., Lian, J., Li, Y., Liu, Y., Ma, K., Mi, X., Qiao, X., Wang, X., Wang, X., Xu, H., Ye, W., … Kembel, S. W. (2024). Host specificity of plant-associated bacteria is negatively associated with genome size and host abundance along a latitudinal gradient. Ecology Letters, 27(6), 14447. doi:10.1111/ele.14447.
[90] Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. (2023). A Look at Plant-Growth-Promoting Bacteria. Plants, 12(8), 1668. doi:10.3390/plants12081668.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
