Country-Specific Data on Buffalo Manure Management Practices Improves Estimates of Manure Methane Emissions
Downloads
This study addressed data gaps in manure management systems (MMS) for buffalo in the Philippines to improve the national greenhouse gas (GHG) inventory of methane (CH4) emissions. A total of 772 buffalo farmers were surveyed through face-to-face interviews to document their socio-economic and farm profiles as well as fraction of manure managed in each MMS. These data are essential inputs for developing country-specific CH4 emission factors (EF) following the Tier 2 method of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Findings revealed notable differences in the socio-economic and farm profiles of dairy versus draft buffalo farmers. The fraction of manure managed in each MMS also varied by farm scale. Smallholder farms primarily left manure to decompose in the grazing area (58.30%), applied manure to crops (30.45%) or managed it in solid storage (6.31%). Semi-commercial farms employed more diverse systems, including crop application (47.51%), solid storage (11.65%) and composting (3.24%), in addition to leaving manure in the grazing area (32.46%). Comparison with the Tier 1 MMS assumptions showed that Tier 1 default values failed to fully capture the range of MMS observed in the field. The Tier 2 EF estimated in this study was 8-10% higher than the Tier 1 EF for smallholder systems, and substantially higher by 39-92% for semi-commercial and commercial farms, exceeding the IPCC Tier 1 default EF uncertainty margins. This study highlights the critical role of country-specific data in enhancing the accuracy of GHG emission estimates, thereby supporting the development of more effective and informed mitigation strategies. Key recommendations include institutionalizing the Tier 2 method in national inventory compilation systems, and promoting improved manure management on smallholder farms through targeted training and extension programs.
Downloads
[1] United Nations Framework Convention on Climate Change. (2024). Key aspects of the Paris Agreement. UNFCCC. Available online: https://unfccc.int/most-requested/key-aspects-of-the-paris-agreement (accessed on November 2025).
[2] Denchak, M., & Hu, S. (2025). Paris climate agreement: Everything you need to know. Natural Resources Defense Council. Available online: https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know (accessed on November 2025).
[3] Qiu, J., Seah, S., & Martinus, M. (2024). Examining climate ambition enhancement in ASEAN countries’ nationally determined contributions. Environmental Development, 49, 100945. doi:10.1016/j.envdev.2023.100945.
[4] UNFCCC. (2018). Decision 18/CMA. 1, Modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement, FCCC/PA/CMA/2018/3/Add. 2. Bonn: United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/documents/193408 (accessed on November 2025).
[5] Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (Eds). Published by IGES, Japan.
[6] Global Research Alliance. (2018). Livestock Development and Climate Change: The benefits of advance greenhouse gas inventories. Available online: https://globalresearchalliance.org/wp-content/uploads/2018/06/Inventory-Brochure-on-Livestock-Development-and-Climate-Change-2016.pdf (accessed on November 2025).
[7] Wilkes, A. & van Dijk, S. (2018). Tier 2 Approaches in the Livestock Sector: A Collection of Greenhouse Gas Inventory Practices. Available online: https://globalresearchalliance.org/wp-content/uploads/2018/12/Livestock-Tier-2-collection_Final_181130.pdf (accessed on November 2025).
[8] Republic of the Philippines. (2021). Nationally Determined Contribution Communicated to the UNFCCC on 15 April 2021. Available online: https://unfccc.int/sites/default/files/NDC/2022-06/Philippines%20-%20NDC.pdf (accessed on November 2025).
[9] Philippine Climate Change Commission. (2025). Philippines’ First Biennial Transparency Report. Manila. Available online: https://unfccc.int/documents/646250 (accessed on November 2025).
[10] Valiente, E. P., Sobremisana, M. J., Vergara, D. G. K., & Dizon, J. T. (2023). Waste management practices of dairy buffalo farmers in Nueva Ecija, Philippines. Journal of Environmental Science and Management, 26(2), 17-30.
[11] Delos Santos, D. T., Torres, M. M., & Peria, J. N. T. (2025). Quantifying Greenhouse Gas Emissions of Water Buffalo by Age Category in Central Aurora, Philippines. International Journal of Multidisciplinary: Applied Business and Education Research, 6(6), 2755–2765. doi:10.11594/ijmaber.06.06.08.
[12] Gupta, P. K., Jha, A. K., Koul, S., Sharma, P., Pradhan, V., Gupta, V., Sharma, C., & Singh, N. (2007). Methane and nitrous oxide emission from bovine manure management practices in India. Environmental Pollution, 146(1), 219–224. doi:10.1016/j.envpol.2006.04.039.
[13] Nampoothiri, V. M., Mohini, M., Malla, B. A., Mondal, G., & Pandita, S. (2020). Animal performance, and enteric methane, manure methane and nitrous oxide emissions from Murrah buffalo calves fed diets with different forage-to-concentrate ratios. Animal Production Science, 60(6), 780–789. doi:10.1071/AN17727.
[14] Hidayat, C., Widiawati, Y., Tiesnamurti, B., Pramono, A., Krisnan, R., & Shiddieqy, M. I. (2021). Comparison of methane production from cattle, buffalo, goat, rabbit, chicken, and duck manure. IOP Conference Series: Earth and Environmental Science, 648(1), 12112. doi:10.1088/1755-1315/648/1/012112.
[15] Hassouna, M., van der Weerden, T. J., Beltran, I., Amon, B., Alfaro, M. A., Anestis, V., Cinar, G., Dragoni, F., Hutchings, N. J., Leytem, A., Maeda, K., Maragou, A., Misselbrook, T., Noble, A., Rychła, A., Salazar, F., & Simon, P. (2023). DATAMAN: A global database of methane, nitrous oxide, and ammonia emission factors for livestock housing and outdoor storage of manure. Journal of Environmental Quality, 52(1), 207–223. doi:10.1002/jeq2.20430.
[16] Beltran, I., van der Weerden, T. J., Alfaro, M. A., Amon, B., de Klein, C. A. M., Grace, P., Hafner, S., Hassouna, M., Hutchings, N., Krol, D. J., Leytem, A. B., Noble, A., Salazar, F., Thorman, R. E., & Velthof, G. L. (2021). DATAMAN: A global database of nitrous oxide and ammonia emission factors for excreta deposited by livestock and land-applied manure. Journal of Environmental Quality, 50(2), 513–527. doi:10.1002/jeq2.20186.
[17] Nepal, S., Byanju, R. M., Chaudhary, P., Rijal, K., Baskota, P., & Thakuri, S. (2023). Methane release from enteric fermentation and manure management of domestic water buffalo in Nepal. Environmental Monitoring and Assessment, 195(5), 603. doi:10.1007/s10661-023-11209-6.
[18] Teenstra, E. D., Vellinga, T. V., Aektasaeng, N., Amatayakul, W., Ndambi, OA., Pelster, D., Germer, Andreas, L., Opio, C., & Andeweg, K. (2014). Global assessment of manure management policies and practices (No. 844). Wageningen, The Netherlands: Wageningen UR Livestock Research. doi:10.6084/m9.figshare.8251232.
[19] Philippine Statistics Authority. (2022). Approving and adopting the revision in the classification of livestock and poultry farms from backyard and commercial to smallhold, semi-commercial and commercial farms, and the definitions by animal type. PSA Board Resolution No. 04 (2022). Manila: Philippine Statistics Authority Board. Available online: https://psa.gov.ph/system/files/psa-board/PSA%2520Board%2520Reso%2520No.%252004%2520series%2520of%25202022_0.pdf (accessed on November 2025).
[20] Johnson, D., Almaraz, M., Rudnick, J., Parker, L. E., Ostoja, S. M., & Khalsa, S. D. S. (2023). Farmer Adoption of Climate-Smart Practices Is Driven by Farm Characteristics, Information Sources, and Practice Benefits and Challenges. Sustainability (Switzerland), 15(10), 8083. doi:10.3390/su15108083.
[21] Aquino, D. L., Palacpac, E. P., Molina, A. M., Lacanilao, C. C., Garcia, N. P., Del Barrio, A. N., & Fujihara, T. (2024). Enhancing Growth and Milk Production of Dairy Buffaloes Through Home-Grown Forages and Complete Nutrient Diet. Online Journal of Animal and Feed Research, 14(2), 95–106. doi:10.51227/ojafr.2024.12.
[22] Wang, J., He, Y., Pang, K., Zeng, Q., Zhang, X., Ren, F., & Guo, H. (2019). Changes in milk yield and composition of colostrum and regular milk from four buffalo breeds in China during lactation. Journal of the Science of Food and Agriculture, 99(13), 5799–5807. doi:10.1002/jsfa.9849.
[23] Mloszewski, M. J., & Mahaney, W. C. (2021). A check-list of wild African Bovidae related to montane habitats, with an expanded note on geophagic behaviour of buffalo on Mount Kenya. Quaternary and Environmental Research on East African Mountains, 309–324. doi:10.1201/9781003211457-20.
[24] Keena, M. (2022). Eutrophication (algal blooms) in Big A fish kill in North Environmental Implications of Excess Fertilizer and Manure on Water Quality. Available online: https://www.ndsu.edu/agriculture/sites/default/files/2022-08/nm1281_0.pdf (accessed on November 2025).
[25] Cai, Y., & Akiyama, H. (2016). Nitrogen loss factors of nitrogen trace gas emissions and leaching from excreta patches in grassland ecosystems: A summary of available data. Science of the Total Environment, 572, 185–195. doi:10.1016/j.scitotenv.2016.07.222.
[26] Zhao, N., Ma, J., Wu, L., Li, X., Xu, H., Zhang, J., Wang, X., Wang, Y., Bai, L., & Wang, Z. (2024). Effect of Organic Manure on Crop Yield, Soil Properties, and Economic Benefit in Wheat-Maize-Sunflower Rotation System, Hetao Irrigation District. Plants, 13(16), 2250. doi:10.3390/plants13162250.
[27] Manea, E. E., Bumbac, C., Dinu, L. R., Bumbac, M., & Nicolescu, C. M. (2024). Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements. Sustainability (Switzerland), 16(15), 6329. doi:10.3390/su16156329.
[28] Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from ruminant supply chains—A global life cycle assessment. Rome: Food and Agriculture Organization (FAO). Available online: http://www.fao.org/3/i3461e/i3461e.pdf (accessed on November 2025).
[29] Samal, A., Sahu, S. K., Mishra, A., Mangaraj, P., Pani, S. K., & Beig, G. (2024). Assessment and Quantification of Methane Emission from Indian Livestock and Manure Management. Aerosol and Air Quality Research, 24(6), 230204. doi:10.4209/aaqr.230204.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














